The present study aims at the numerical simulations of the melting process of cerium oxide particles in RF thermal plasma.The physical model and the calculating method were described firstly;the interaction between ce...The present study aims at the numerical simulations of the melting process of cerium oxide particles in RF thermal plasma.The physical model and the calculating method were described firstly;the interaction between cerium oxide particles and plasma was analyzed;specific attention was given to the effects of particle initial size,injection velocity on the particle melting and trajectory in plasma.The influence of the temperature field and velocity field distribution of the plasma around the particle trajectory on the melting effect is analyzed,and the relationship between the heat absorption efficiency of the particles and the particle size reduction process is further determined.It is also found that there exists an optimal particle initial injection velocity which led to a more concentrated final particle size distribution and a more significant reduction of particle size.The results could provide effective guidance for understanding the plasma spheroidization process of uranium dioxide and cerium dioxide powder particles.展开更多
The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the infl...The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the influence between different frequency components in the top tension on the riser system is theoretically simulated and analyzed. With the Euler-Bernoulli beam theory, a dynamic model for the vibrations of the riser is established. The top tension is set as fluctuating with time and it has two different frequencies. The influences from the fluctuation amplitudes, circular frequencies and phase angles of these frequency components on the riser system are analyzed in detail. When these two frequencies are fluctuating in the stable regions, the riser system may become unstable because ω1+ω2≈2Ωn. The fluctuation amplitudes of these frequencies have little effect on the components of the vibration frequencies of the riser. For different phase angles, the stability and dynamic behaviors of the riser would be different.展开更多
Between June 2005 and February 2006, focal sampling and all occurrence behavior recording were used to quantify the behavioral patterns of captive female alpine musk deer (Moschus sifanicus) at Xinglongshan Musk Dee...Between June 2005 and February 2006, focal sampling and all occurrence behavior recording were used to quantify the behavioral patterns of captive female alpine musk deer (Moschus sifanicus) at Xinglongshan Musk Deer Farm, Gansu Province, China. Copulation success was used to differentiate individuals into two groups (successful and unsuccessful) and to provide a basis for behavioral comparisons, throughout both mating (rut) and non mating seasons. The results indicated significant differences between the behavior patterns of successful and unsuccessful females; however, the reproductive season played an important environmental factor. Pooling results across reproductive seasons, successfully copulating females showed significantly higher frequencies of vigilance and lower frequency of feeding behavior as compared with unsuccessfully copulating females. In the non-mating season, unsuccessfully copulating females had higher frequency of self-directed behavior, environment sniffing, and were less aggressive than successful copulating females. Furthermore, females who were successful at copulating also demonstrated tail-pasting behavior; however, this only occurred during the rut season. The results of this study can improve management practices for musk deer farms through increasing mating success and reducing maintenance costs. Furthermore, variation in behavior may also be used as a predictor of copulation success and reproductive potential, whereby females can be grouped and separated according to their reproductive history and past reproduction success.展开更多
The Fe−Ni−TiO_(2) nanocomposite coatings were electrodeposited by pulse frequency variation.The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at h...The Fe−Ni−TiO_(2) nanocomposite coatings were electrodeposited by pulse frequency variation.The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies.By increasing the pulse frequency from 10 to 500 Hz,the iron and TiO_(2) nanoparticles contents were increased in expense of nickel content.XRD patterns showed that by increasing the frequency to 500 Hz,an enhancement of BCC phase was observed and the grain size of deposits was reduced to 35 nm.The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO_(2) nanoparticles into the Fe−Ni matrix(5.13 wt.%).Moreover,the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.展开更多
High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite ...High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite core;their functions partly depend on this core characteristic. One of the characteristics of the ferrite core is thermal behavior that should be paid attention to because it affects the transformer function and causes heat generation. In this paper, a typical high frequency transformer with ferrite core is designed and simulated in ANSYS software. Temperature rise due to winding current (Joule-heat) is considered as heat generation source for thermal behavior analysis of the transformer. In this simulation, the temperature rise and heat distribution are studied and the effects of parameters such as flux density, winding loss value, using a fan to cool the winding and core and thermal conductivity are investigated.展开更多
Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles...Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.展开更多
In view of the unstable welding process of Tri-Arc DE,surfacing test with Q235 steel plate was completed with the help of the self-built high-speed camera and waveform synchronous acquisition system using the Tri-Arc ...In view of the unstable welding process of Tri-Arc DE,surfacing test with Q235 steel plate was completed with the help of the self-built high-speed camera and waveform synchronous acquisition system using the Tri-Arc DE technology. The effects of pulsed M-Arc frequency on Tri-Arc DE droplet transfer and weld formation were analyzed. The results show that while the gradual increase of pulse frequency,the droplet transfer frequency gradually decreases,which is followed by several drops per pulse,one drop per pulse,and one drop within several pulses. The most ideal transfer form is one drop per pulse,of which the welding process is the most stable,and the quality of weld formation is the most satisfied.展开更多
A conveyor belt driven by wound rotor motors produces dynamic tension, velocity and accelerationduring starting. The terrible situation (such as resonance) in dynamic analysis and design is that system naturalfrequenc...A conveyor belt driven by wound rotor motors produces dynamic tension, velocity and accelerationduring starting. The terrible situation (such as resonance) in dynamic analysis and design is that system naturalfrequencies are equal to those for switching off electric resistances. This paper analyzes and determines systemnatural frequencies based on a modeling method of receptances with the analysis of sub-systems model and of theprinciple of their addition and conveyor loop closure. It also puts forward to calculate the time interval for switching off electric resistances. The starting of one conveyor is simulated by lumped-mass-spring-model software tofurther illustrate the influence of time interval for switching off electric resistances on conveyor dynamic behavior. Two methods are also compared. The receptance model is proved to be an excellent alternative.展开更多
A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent....A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent. However, historical earthquake records and laboratory test results indicate that nonlinear soil behavior is frequency- dependent. Several frequency-dependent equivalent linear methods (FDEQL) related to the Fourier amplitude of shear strain time history have been developed to take into account the frequency-dependent soil behavior. Furthermore, the shear strain threshold plays an important role in soil behavior. For shear strains below the elastic shear strain threshold, soil behaves essentially as a linear elastic mate- rial. To consider the effect of elastic-shear-strain-threshold- and frequency-dependent soil behavior on wave propaga- tion, the shear-strain-threshold- and frequency-dependent equivalent linear method (TFDEQL) is proposed. A series of analyses is implemented for EQL, FDEQL, and TFDEQL methods. Results show that elastic-shear-strain-threshold- and frequency-dependent soil behavior plays a great influence on the computed site response, especially for the high- frequency band. Also, the effect of elastic-strain-threshold- and frequency-dependent soil behavior on the site response is analyzed from relatively weak to strong input motion, and results show that the effect is more pronounced as input motion goes from weak to strong.展开更多
In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at ...In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at intermediate frequency(360-800 Hz)was conducted and the results were compared with a butt contact with the same contact diameter(41 mm)and the same material.By analyzing the arc behavior,arc voltage characteristics,arc energy,current interrupting capacity,ablation of the anode contact and condensation of the arc products at a 3 mm gap,the differences in their vacuum arc characteristics were determined.The correlations of their arc energy with the amplitude and the frequency of the current were also achieved.Analysis suggests that the ruled curved contact has strong application potentiality because of its low arc energy,low arc voltage noise and arc voltage peak,light ablation on the surface of the anode contact and high interrupting capacity.展开更多
Frequency-dependent rupture behavior of sub- duction zone interplate megathrust faults has been observed by back-projection method in different frequency bands (from 0.05 to 5 Hz). It has been suggested that the dow...Frequency-dependent rupture behavior of sub- duction zone interplate megathrust faults has been observed by back-projection method in different frequency bands (from 0.05 to 5 Hz). It has been suggested that the down-dip region of the Tohoku megathrust radiated strongly at high frequencies (〉10 Hz) compared with that of the up-dip region. By assuming the same source tirne function of each fault patch, we perform a synthetic sensitivity analysis to compare the energy received from the shallower parts (and further way from the receiver sites) with that frona the deeper parts (and closer to the receiver sites) of the rupture. Our results indicate that regional onshore recordings are probably not adequate to constrain the presence of far-off shore high frequency radiations because of the strong attenuation of this region.展开更多
基金supported by National Natural Science Foundation of China(No.11875039)。
文摘The present study aims at the numerical simulations of the melting process of cerium oxide particles in RF thermal plasma.The physical model and the calculating method were described firstly;the interaction between cerium oxide particles and plasma was analyzed;specific attention was given to the effects of particle initial size,injection velocity on the particle melting and trajectory in plasma.The influence of the temperature field and velocity field distribution of the plasma around the particle trajectory on the melting effect is analyzed,and the relationship between the heat absorption efficiency of the particles and the particle size reduction process is further determined.It is also found that there exists an optimal particle initial injection velocity which led to a more concentrated final particle size distribution and a more significant reduction of particle size.The results could provide effective guidance for understanding the plasma spheroidization process of uranium dioxide and cerium dioxide powder particles.
基金financially supported by the National Natural Science Foundation of China(Grant No.51679167 and 51979193)
文摘The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the influence between different frequency components in the top tension on the riser system is theoretically simulated and analyzed. With the Euler-Bernoulli beam theory, a dynamic model for the vibrations of the riser is established. The top tension is set as fluctuating with time and it has two different frequencies. The influences from the fluctuation amplitudes, circular frequencies and phase angles of these frequency components on the riser system are analyzed in detail. When these two frequencies are fluctuating in the stable regions, the riser system may become unstable because ω1+ω2≈2Ωn. The fluctuation amplitudes of these frequencies have little effect on the components of the vibration frequencies of the riser. For different phase angles, the stability and dynamic behaviors of the riser would be different.
基金the National Natural Science Foundation of China (30500060, 30640023,30770286)China Post-doctoral Foundation(2005038431)+1 种基金Shanghai Post-doctoral Scientific Pro-gram of China (2005038294)the 985 Research Projects (CUN 985-03-03) of the Central University for Nationalities of China
文摘Between June 2005 and February 2006, focal sampling and all occurrence behavior recording were used to quantify the behavioral patterns of captive female alpine musk deer (Moschus sifanicus) at Xinglongshan Musk Deer Farm, Gansu Province, China. Copulation success was used to differentiate individuals into two groups (successful and unsuccessful) and to provide a basis for behavioral comparisons, throughout both mating (rut) and non mating seasons. The results indicated significant differences between the behavior patterns of successful and unsuccessful females; however, the reproductive season played an important environmental factor. Pooling results across reproductive seasons, successfully copulating females showed significantly higher frequencies of vigilance and lower frequency of feeding behavior as compared with unsuccessfully copulating females. In the non-mating season, unsuccessfully copulating females had higher frequency of self-directed behavior, environment sniffing, and were less aggressive than successful copulating females. Furthermore, females who were successful at copulating also demonstrated tail-pasting behavior; however, this only occurred during the rut season. The results of this study can improve management practices for musk deer farms through increasing mating success and reducing maintenance costs. Furthermore, variation in behavior may also be used as a predictor of copulation success and reproductive potential, whereby females can be grouped and separated according to their reproductive history and past reproduction success.
文摘The Fe−Ni−TiO_(2) nanocomposite coatings were electrodeposited by pulse frequency variation.The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies.By increasing the pulse frequency from 10 to 500 Hz,the iron and TiO_(2) nanoparticles contents were increased in expense of nickel content.XRD patterns showed that by increasing the frequency to 500 Hz,an enhancement of BCC phase was observed and the grain size of deposits was reduced to 35 nm.The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO_(2) nanoparticles into the Fe−Ni matrix(5.13 wt.%).Moreover,the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.
文摘High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite core;their functions partly depend on this core characteristic. One of the characteristics of the ferrite core is thermal behavior that should be paid attention to because it affects the transformer function and causes heat generation. In this paper, a typical high frequency transformer with ferrite core is designed and simulated in ANSYS software. Temperature rise due to winding current (Joule-heat) is considered as heat generation source for thermal behavior analysis of the transformer. In this simulation, the temperature rise and heat distribution are studied and the effects of parameters such as flux density, winding loss value, using a fan to cool the winding and core and thermal conductivity are investigated.
基金Projects(50674018, 50474055) supported by the National Natural Science Foundation of China
文摘Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.
基金Project was supported by the National Natural Science Foundation of China(Grant No.U1733125)Natural Science Foundation of Tianjin(Grant No.18JCYBJC19100,18JCYJC18700)
文摘In view of the unstable welding process of Tri-Arc DE,surfacing test with Q235 steel plate was completed with the help of the self-built high-speed camera and waveform synchronous acquisition system using the Tri-Arc DE technology. The effects of pulsed M-Arc frequency on Tri-Arc DE droplet transfer and weld formation were analyzed. The results show that while the gradual increase of pulse frequency,the droplet transfer frequency gradually decreases,which is followed by several drops per pulse,one drop per pulse,and one drop within several pulses. The most ideal transfer form is one drop per pulse,of which the welding process is the most stable,and the quality of weld formation is the most satisfied.
文摘A conveyor belt driven by wound rotor motors produces dynamic tension, velocity and accelerationduring starting. The terrible situation (such as resonance) in dynamic analysis and design is that system naturalfrequencies are equal to those for switching off electric resistances. This paper analyzes and determines systemnatural frequencies based on a modeling method of receptances with the analysis of sub-systems model and of theprinciple of their addition and conveyor loop closure. It also puts forward to calculate the time interval for switching off electric resistances. The starting of one conveyor is simulated by lumped-mass-spring-model software tofurther illustrate the influence of time interval for switching off electric resistances on conveyor dynamic behavior. Two methods are also compared. The receptance model is proved to be an excellent alternative.
基金supported by the Science for Earthquake Resilience of China Earthquake Administration(Grant No.XH14060)the National Natural Science Foundation of China(Grant No.51478135)
文摘A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent. However, historical earthquake records and laboratory test results indicate that nonlinear soil behavior is frequency- dependent. Several frequency-dependent equivalent linear methods (FDEQL) related to the Fourier amplitude of shear strain time history have been developed to take into account the frequency-dependent soil behavior. Furthermore, the shear strain threshold plays an important role in soil behavior. For shear strains below the elastic shear strain threshold, soil behaves essentially as a linear elastic mate- rial. To consider the effect of elastic-shear-strain-threshold- and frequency-dependent soil behavior on wave propaga- tion, the shear-strain-threshold- and frequency-dependent equivalent linear method (TFDEQL) is proposed. A series of analyses is implemented for EQL, FDEQL, and TFDEQL methods. Results show that elastic-shear-strain-threshold- and frequency-dependent soil behavior plays a great influence on the computed site response, especially for the high- frequency band. Also, the effect of elastic-strain-threshold- and frequency-dependent soil behavior on the site response is analyzed from relatively weak to strong input motion, and results show that the effect is more pronounced as input motion goes from weak to strong.
基金National Natural Science Foundation of China(Nos.51677002 , 51937004)Civil Aircraft Special Research and Technology Research Project(MJ-2017-S-46)+1 种基金State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERIKF004)Hebei University of Technology and selected from the 1st International Symposium on Insulation and Discharge Computation for Power Equipment.
文摘In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at intermediate frequency(360-800 Hz)was conducted and the results were compared with a butt contact with the same contact diameter(41 mm)and the same material.By analyzing the arc behavior,arc voltage characteristics,arc energy,current interrupting capacity,ablation of the anode contact and condensation of the arc products at a 3 mm gap,the differences in their vacuum arc characteristics were determined.The correlations of their arc energy with the amplitude and the frequency of the current were also achieved.Analysis suggests that the ruled curved contact has strong application potentiality because of its low arc energy,low arc voltage noise and arc voltage peak,light ablation on the surface of the anode contact and high interrupting capacity.
基金supported by NSFC grants(Nos.91128210and 40821062)
文摘Frequency-dependent rupture behavior of sub- duction zone interplate megathrust faults has been observed by back-projection method in different frequency bands (from 0.05 to 5 Hz). It has been suggested that the down-dip region of the Tohoku megathrust radiated strongly at high frequencies (〉10 Hz) compared with that of the up-dip region. By assuming the same source tirne function of each fault patch, we perform a synthetic sensitivity analysis to compare the energy received from the shallower parts (and further way from the receiver sites) with that frona the deeper parts (and closer to the receiver sites) of the rupture. Our results indicate that regional onshore recordings are probably not adequate to constrain the presence of far-off shore high frequency radiations because of the strong attenuation of this region.