The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly af...The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly affecting the heat setting performance.In a traditional heat setting machine,the outlet airflow maldistribution of the plenum chamber still exists.In this study,a novel plenum chamber with an airfoil baffle was established to improve the uniformity of the velocity distribution at the outlet in a heat setting machine.The structural influence of the plenum chamber on the velocity distribution was investigated using a computational fluid dynamics program.It was found that a chamber with a smaller outlet partition thickness had a better outlet velocity uniformity.The structural optimization of the plenum chamber was conducted using the particle swarm optimization algorithm.The outlet partition thickness,the transverse distance and the longitudinal distance of the optimized plenum chamber were 20,686.2 and 274.6 mm,respectively.Experiments were carried out.The experimental and simulated results showed that the optimized plenum chamber with an airfoil baffle could improve the outlet velocity uniformity.The air outlet velocity uniformity index of the optimized plenum chamber with an airfoil baffle was 4.75%higher than that of the plenum chamber without an airfoil baffle and 5.98%higher than that of the conventional chamber with a square baffle in a commercial heat setting machine.展开更多
To evaluate post-miosis changes in the anterior chamber structures in various angle-closure glaucomas(ACG). Totally 14 eyes of primary chronic angle-closure glaucoma(PCACG), 12 eyes of lens-induced secondary chronic a...To evaluate post-miosis changes in the anterior chamber structures in various angle-closure glaucomas(ACG). Totally 14 eyes of primary chronic angle-closure glaucoma(PCACG), 12 eyes of lens-induced secondary chronic angleclosure glaucoma(LSACG) and 14 healthy eyes were recruited. After miosis, for PCACG group, intraocular pressure(IOP) and anterior chamber depth(ACD) changed not significantly, while anterior chamber angle widened significantly. LSACG group showed a significant increase in IOP, decrease in ACD, and narrowing in anterior chamber angle. Healthy eyes showed significant decreases in IOP and anterior chamber parameters. Thus, miosis could widen the anterior chamber angle of patients with PCACG, while increase the narrowing of anterior chamber angle and IOP of patients with LSACG. We should pay attention to the distinction between PCACG and LSACG patients and the proper administration of pilocarpine in the treatment of patients with chronic ACG.展开更多
In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an importan...In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an important role.Calculated according to statics and relevant contents,the structure had the same total volume as the traditional segmented structure,but had shorter length,wider width and greater height.Those prevented the structure from stress or deformation failure.Some reinforcing ribs with enough moments of inertia were welded in the external shell.Because of the one-piece structure,this refuge chamber reduced the risk of sealing which was a serious problem of segmented structure.Impact load with 300 ms duration and0.6 MPa over-pressure was settled.Explicit nonlinear dynamic analysis program was used to simulate the response of the refuge chamber.The maximum stress and the maximum displacement were obtained.The refuge chamber including blast airtight doors could meet the rigidity requirement.Weak parts of the chamber were the front and back end shell where bigger displacement values occurred than others.Thus,the calculation indicated that the refuge chamber could meet structural safety requirements.Based on the numerical analysis,suggestions were put forward for further resistance ability improvement.Only large inclined shaft with larger wellhead was suitable for this one-piece coal mine mobile refuge chamber.展开更多
To reduce the damage of the pressurizing panel structure of a fuselage caused by an explosion at the“least risk bomb location”in an aircraft structure,a new pre-separation panel structure was designed to resist blas...To reduce the damage of the pressurizing panel structure of a fuselage caused by an explosion at the“least risk bomb location”in an aircraft structure,a new pre-separation panel structure was designed to resist blast loading.First,the dynamic strain response and morphology of impact damage of the new pre-separation panel were measured in an impact damage test.Second,the commercial software LS-DYNA was used to calculate the propagation of the blast shock wave,and the results were compared with empirical equations to verify the rationality of the numerical calculation method.Finally,the fluid–structure coupling method was used to calculate the damage process of the pre-separation panel structure under the impact of an explosion wave and an impact block.The calculated results were in good agreement with the test results,which showed the rationality of the calculation method and the model.The residual strength of the damaged pre-separation panel was significantly higher than that of the original damaged panel.The results show that the new pre-separation panel structure is reasonable and has certain significance for guiding the design of plenum chambers with strong resistance to implosion for aircraft fuselages.展开更多
基金National Natural Science Foundation of China(No.62173307)the Key R&D Projects of Science and Technology Department of Zhejiang Province,China(Nos.2023C01158,2022C01065 and 2022C01188)the Fundamental Research Funds of Zhejiang Sci-Tech University,China(No.22242298-Y)。
文摘The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly affecting the heat setting performance.In a traditional heat setting machine,the outlet airflow maldistribution of the plenum chamber still exists.In this study,a novel plenum chamber with an airfoil baffle was established to improve the uniformity of the velocity distribution at the outlet in a heat setting machine.The structural influence of the plenum chamber on the velocity distribution was investigated using a computational fluid dynamics program.It was found that a chamber with a smaller outlet partition thickness had a better outlet velocity uniformity.The structural optimization of the plenum chamber was conducted using the particle swarm optimization algorithm.The outlet partition thickness,the transverse distance and the longitudinal distance of the optimized plenum chamber were 20,686.2 and 274.6 mm,respectively.Experiments were carried out.The experimental and simulated results showed that the optimized plenum chamber with an airfoil baffle could improve the outlet velocity uniformity.The air outlet velocity uniformity index of the optimized plenum chamber with an airfoil baffle was 4.75%higher than that of the plenum chamber without an airfoil baffle and 5.98%higher than that of the conventional chamber with a square baffle in a commercial heat setting machine.
基金Supported by the National Natural Science Foundation of China(No.81471744)
文摘To evaluate post-miosis changes in the anterior chamber structures in various angle-closure glaucomas(ACG). Totally 14 eyes of primary chronic angle-closure glaucoma(PCACG), 12 eyes of lens-induced secondary chronic angleclosure glaucoma(LSACG) and 14 healthy eyes were recruited. After miosis, for PCACG group, intraocular pressure(IOP) and anterior chamber depth(ACD) changed not significantly, while anterior chamber angle widened significantly. LSACG group showed a significant increase in IOP, decrease in ACD, and narrowing in anterior chamber angle. Healthy eyes showed significant decreases in IOP and anterior chamber parameters. Thus, miosis could widen the anterior chamber angle of patients with PCACG, while increase the narrowing of anterior chamber angle and IOP of patients with LSACG. We should pay attention to the distinction between PCACG and LSACG patients and the proper administration of pilocarpine in the treatment of patients with chronic ACG.
基金Supported by the Major State Basic Research Development Program of China(973Project)(2011CB706900)
文摘In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an important role.Calculated according to statics and relevant contents,the structure had the same total volume as the traditional segmented structure,but had shorter length,wider width and greater height.Those prevented the structure from stress or deformation failure.Some reinforcing ribs with enough moments of inertia were welded in the external shell.Because of the one-piece structure,this refuge chamber reduced the risk of sealing which was a serious problem of segmented structure.Impact load with 300 ms duration and0.6 MPa over-pressure was settled.Explicit nonlinear dynamic analysis program was used to simulate the response of the refuge chamber.The maximum stress and the maximum displacement were obtained.The refuge chamber including blast airtight doors could meet the rigidity requirement.Weak parts of the chamber were the front and back end shell where bigger displacement values occurred than others.Thus,the calculation indicated that the refuge chamber could meet structural safety requirements.Based on the numerical analysis,suggestions were put forward for further resistance ability improvement.Only large inclined shaft with larger wellhead was suitable for this one-piece coal mine mobile refuge chamber.
文摘To reduce the damage of the pressurizing panel structure of a fuselage caused by an explosion at the“least risk bomb location”in an aircraft structure,a new pre-separation panel structure was designed to resist blast loading.First,the dynamic strain response and morphology of impact damage of the new pre-separation panel were measured in an impact damage test.Second,the commercial software LS-DYNA was used to calculate the propagation of the blast shock wave,and the results were compared with empirical equations to verify the rationality of the numerical calculation method.Finally,the fluid–structure coupling method was used to calculate the damage process of the pre-separation panel structure under the impact of an explosion wave and an impact block.The calculated results were in good agreement with the test results,which showed the rationality of the calculation method and the model.The residual strength of the damaged pre-separation panel was significantly higher than that of the original damaged panel.The results show that the new pre-separation panel structure is reasonable and has certain significance for guiding the design of plenum chambers with strong resistance to implosion for aircraft fuselages.