In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N ...In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize.展开更多
The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the develop...The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.展开更多
Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research w...Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.展开更多
Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass...Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass. This study aimed to evaluate the effectiveness of omega-3 fatty acid supplementation on the phase angle of people living with HIV/AIDS. Methods: In this study, 63 individuals of all genders who were undergoing outpatient follow-up and showed lipodystrophy due to highly active antiretroviral therapy were analyzed. Our sample consisted of two groups, one that received supplementation containing 2550 mg of omega-3/day (1080 mg of eicosapentaenoic acid and 720 mg of docosahexaenoic acid) for three months (n = 32) and another that underwent nutrition guidance (n = 31). Phase angle and body cell mass were assessed for both groups and compared at the beginning of research (T0) and after our intervention (T1) for each group separately. Results: Phase angle averaged 6.45° ± 1.06 SD. The comparison between T0 and T1 showed a significant increase in phase angle and body cell mass, whereas the guidance group showed a decrease in body cell mass at T1 in relation to T0, with a significant p-value. Variance in phase angle between moments showed significant values between T0 and T1 in the supplementation group for all genders. Conclusion: Omega-3 positively modulated patients phase angle and body cell mass, but we emphasize the need for other studies that can solidify knowledge about supplementation dosage and intervention time.展开更多
Plant architecture is a collection of major agronomic traits that determines rice grain production,and it is mainly influenced by tillering,tiller angle,plant height and panicle morphology(Wang and Li 2006).Tiller ang...Plant architecture is a collection of major agronomic traits that determines rice grain production,and it is mainly influenced by tillering,tiller angle,plant height and panicle morphology(Wang and Li 2006).Tiller angle is one of the critical components that determines rice plant architecture,which in turn influences grain yield mainly due to its large impact on plant density(Wang et al.2022).展开更多
Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial...Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial inhomogeneity.However,only a few methods provide spatial-resolved information for characterizing local twist angle distribution.展开更多
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o...In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.展开更多
The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique re...The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.展开更多
Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural f...Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural forms are shown,including the traditional smooth cylinder(P0),and the Terebridae-inspired cylinder with the helical angle of 30°(P_(30)),60°(P_(60)),and 90°(P_(90)).Computational fluid dynamics(CFD)method is adopted to solve the flow pass the Terebridae-inspired structures,and the vibration equation is solved using the Newmark-βmethod.The results show that for P_(30),P_(60) and P_(90),the VIV responses are effectively suppressed in the lock-in region,and P_(60) showed the best VIV suppression performance.The transverse amplitude and the downstream amplitude can be reduced by 82.67%and 91.43%respectively for P_(60) compared with that for P0,and the peak of the mean-drag coefficient is suppressed by 53.33%.The Q-criterion vortices of P_(30),P_(60),and P_(90) are destroyed,with irregular vortices shedding.It is also found that the boundary layer separation is located on the Terebridae-inspired ribs.The twisted ribs cause the separation point to constantly change along the spanwise direction,resulting in the development of the boundary layer separation being completely destroyed.The strength of the wake flow is significantly weakened for the Terebridae-inspired cylinder.展开更多
Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Theref...Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.展开更多
AIM:To investigate the association between juvenile open angle glaucoma(JOAG)and mental health among Koreans.METHODS:This study used nationally representative data from the 8th Korea National Health and Nutrition Exam...AIM:To investigate the association between juvenile open angle glaucoma(JOAG)and mental health among Koreans.METHODS:This study used nationally representative data from the 8th Korea National Health and Nutrition Examination Survey(KNHANES)2021.Glaucoma diagnosis followed the International Society of Geographical and Epidemiological Ophthalmology criteria based on glaucomatous structural defects,visual field defects,corrected vision,and intraocular pressure.As outcomes,suicidal behaviors,psychiatric counseling,and depression were evaluated through mental health questionnaires.Odds ratios(ORs)with 95%confidence intervals(CIs)were estimated using logistic regression models,adjusting for covariates.RESULTS:Among 7090 participants,3446 met the inclusion criteria for analysis,and 88(2.6%)were diagnosed with open angle glaucoma(OAG).After adjusting for age,sex,and best-corrected visual acuity(VA),participants with OAG were revealed to have significantly higher odds of suicidal behaviors(i.e.,ideation,planning,or attempts)compared with those without OAG(OR:2.70;95%CI:1.12-6.54;P=0.028).This association remained significant after further adjustments for socioeconomic status,lifestyle factors,and presence of chronic conditions(P=0.031 and 0.035,respectively).However,there was no significant difference for the other two outcomes,psychiatric counseling and depression.An age-stratified analysis revealed a stronger association between OAG and suicidal behaviors in younger JOAG participants(<40y)than in older OAG participants(≥40y;OR:3.80 vs 2.22;95%CI:0.79-18.22 vs 0.56-8.80,respectively).CONCLUSION:OAG patients show a higher risk of suicidal behaviors than those without glaucoma particularly in JOAG patients.展开更多
AIM:To investigate Omicron’s impact on clinical presentation of acute primary angle closure(APAC)in China.METHODS:A consecutive case series with historical controls was conducted at Shenzhen Eye Hospital,the largest ...AIM:To investigate Omicron’s impact on clinical presentation of acute primary angle closure(APAC)in China.METHODS:A consecutive case series with historical controls was conducted at Shenzhen Eye Hospital,the largest specialized hospital in Shenzhen,China.Medical records from a two-month period during the Omicron pandemic(December 1,2022,to January 31,2023)were compared with records from two control groups(12/2018–1/2019 and 12/2021–1/2022)before pandemic.Patients with APAC were included,and the prevalence of APAC and demographic characteristics in Omicron-infected and noninfected patients were compared.RESULTS:Seventy-one(23.43%)out of 303 patients were diagnosed with APAC in the pandemic cohort,which was 2.98 and 2.61 times higher than that in control cohorts(7.87%in 2019,8.96%in 2022,P<0.001).The pandemic cohort has significantly higher Omicron-infected rate(78.87%vs 0 vs 0;P<0.001),lower proportion of glaucoma history(16.90%vs 42.86%vs 41.67%,P=0.005),higher surgical rate(95.77%vs 83.33%vs 78.57%,P=0.024),higher total medical costs and larger pupil diameter(5.63±0.15 vs 4.68±0.15 vs 4.69±0.22 mm,P<0.01).In 83%Omicron-infected patients,ocular symptoms appeared within 3d after systemic symptoms onset.In multivariate analysis,Omicron infection(P<0.001)was the only independent predictor of pupil diameter.CONCLUSION:In the Omicron epidemic in China,there is an increase of prevalence and severity of APAC,particularly focusing on the first 3d following infection.展开更多
Flag leaf angle is one of the key target traits in high yield wheat breeding.A smaller flag leaf angle reduces shading and enables plants to grow at a higher density,which increases yield.Here we identified a mutant,j...Flag leaf angle is one of the key target traits in high yield wheat breeding.A smaller flag leaf angle reduces shading and enables plants to grow at a higher density,which increases yield.Here we identified a mutant,je0407,with an 84.34%-89.35%smaller flag leaf angle compared with the wild type.The mutant also had an abnormal lamina joint and no ligule or auricle.Genetic analysis indicated that the ligule was controlled by two recessive genes,which were mapped to chromosomes 2AS and 2DL.The mutant allele on chromosome 2AS was named Tafla1b,and it was fine mapped to a 1 Mb physical interval.The mutant allele on chr.2DL was identified as Taspl8b,a novel allele of TaSPL8 with a missense mutation in the second exon,which was used to develop a cleaved amplified polymorphic sequence marker.F3 and F4 lines derived from crosses between Jing411 and je0407 were genotyped to investigate interactions between the Tafla1b and Taspl8b alleles.Plants with the Tafla1b/Taspl8a genotype had 58.41%-82.76%smaller flag leaf angles,6.4%-24.9%shorter spikes,and a greater spikelet density(0.382 more spikelets per cm)compared with the wild type.Plants with the Tafla1a/Taspl8b genotype had 52.62%-82.24%smaller flag leaf angles and no differences in plant height or spikelet density compared with the wild type.Tafla1b/Taspl8b plants produced erect leaves with an abnormal lamina joint.The two alleles had dosage effects on ligule formation and flag leaf angle,but no significant effect on thousand-grain weight.The mutant alleles provide novel resources for improvement of wheat plant architecture.展开更多
Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unc...Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.展开更多
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid...Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.展开更多
The purpose of this work is to shed light on the effect of the pivot position on the surface pressure distribution over a 3D wing in different flight conditions.The study is intended to support the design and developm...The purpose of this work is to shed light on the effect of the pivot position on the surface pressure distribution over a 3D wing in different flight conditions.The study is intended to support the design and development of aerospace vehicles where stability analysis,performance optimization,and aircraft design are of primary importance.The following parameters are considered:Mach numbers(M)of 1.3,1.8,2.3,2.8,3.3,and 3.8,angle of incidence(θ)in the range from 5°to 25°,pivot position from h=0.2 to 1.The results of the CFD numerical simulations match available analytical data,thereby providing evidence for the reliability of the used approach.The findings provide valuable insights into the relationship between the surface pressure distribution,the Mach number and the angle of incidence.展开更多
It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the inf...It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the influence of different fault angles on tunnel deformation.The Tabaiyi Tunnel,located in Yunnan Province of China passes through a multi-stage fault zone.The dynamic response characteristics of the surrounding rock in the Tabaiyi Tunnel were studied under various fault dip angles and the most unfavorable angle was identified.Physical model tests were conducted using two types of anchor cables with specific parameters.Additionally,a relationship between the engineering rock mass and energy absorption by the anchor cables was established,demonstrating the advantages of negative Poisson's ratio(NPR)anchor cables.Experimental results indicate that stress concentration tends to occur at the junctions between faults and the surrounding rock mass.Tunnels supported by NPR anchor cables effectively mitigate amplification effects,achieving energy absorption increases of up to 87%compared to positive Poisson's ratio(PR)anchor cables.Furthermore,the highest acceleration amplification was observed at a fault dip angle of 45°,with peak acceleration reaching twice that of the original input wave,indicating that this angle should be avoided in tunnel design.These findings provide valuable insights for the safe management of tunnels traversing fault zones.展开更多
AIM:To directly quantify peroxynitrite(ONOO-)using a highly sensitive fluorescence resonance energy transfer probe RN-NA,investigate the association between ONOOand primary open angle glaucoma(POAG),and clarify whethe...AIM:To directly quantify peroxynitrite(ONOO-)using a highly sensitive fluorescence resonance energy transfer probe RN-NA,investigate the association between ONOOand primary open angle glaucoma(POAG),and clarify whether RN-NA could be used as a potential tool for POAG diagnosis.METHODS:Plasma and aqueous humor(AH)samples were collected from POAG patients(n=100,age:59.70±6.87y)and age-related cataract(ARC)patients(n=100,age:61.15±4.60y)admitted to our hospital.Next,RN-NA was used to detect ONOO-in plasma and AH samples,and the relationship between ONOO-level and POAG was analyzed using binary logistic regression.Besides,Pearson correlation analysis was applied to characterize the correlation of the levels of ONOO-with the patients’age,intraocular pressure(IOP),and mean deviation of visual field testing.The ONOO-scavenger MnTMPyP was employed to treat the 3-morpholinosyndnomine(SIN-1)-induced ocular hypertension in mice(n=7,6-8wk).Finally,the IOP and ONOO-in both eyes were measured 30min after the last drug treatment.RESULTS:ONOO-levels of AH and plasma were significantly higher in the POAG group than in the ARC group(P<0.01).Additionally,ONOO-levels were closely correlated with POAG in a binary logistic regression analysis[odds ratio(OR)=1.008,95%confidence interval(CI):1.002-1.013,P<0.01 for AH;OR=1.004,95%CI:1.002-1.006,P<0.001 for plasma].Pearson correlation analysis showed that ONOO-levels in AH or plasma were positively associated with visual field defects(R=0.51,P<0.01 for AH;R=0.45,P<0.001 for plasma),and ONOO-levels in plasma and AH were correlated in the POAG group(R=0.69,P<0.001).However,administering MnTMPyP to mouse eyes reversed the elevated IOP caused by SIN-1(P<0.05).CONCLUSION:ONOO-levels in AH and plasma,detected by RN-NA,are significantly related to POAG and positively correlated with visual field defects in POAG patients.Hence,ONOO-is a potential biomarker of POAG,especially advanced POAG.Besides,anti-nitration compounds may be novel ocular hypotensive agents based on the animal study.展开更多
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal...The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.展开更多
Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me...Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.展开更多
基金supported by the Biological Breeding-National Science and Technology Major Project (2023ZD04072)the Innovation Program of Chinese Academy of Agricultural Sciencesthe Hainan Yazhou Bay Seed Lab (B23YQ1507)。
文摘In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize.
文摘The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.
基金the Research Fund of National Natural Science Foundation of China(NSFC)(Grant Nos.42477142 and 42277154)the Project of Slope Safety Control and Disaster Prevention Technology Innovation team of“Youth Innovation Talent Introduction and Education Plan”of Shandong Colleges and Universities(Grant No.Lu Jiao Ke Han[2021]No.51)。
文摘Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.
文摘Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass. This study aimed to evaluate the effectiveness of omega-3 fatty acid supplementation on the phase angle of people living with HIV/AIDS. Methods: In this study, 63 individuals of all genders who were undergoing outpatient follow-up and showed lipodystrophy due to highly active antiretroviral therapy were analyzed. Our sample consisted of two groups, one that received supplementation containing 2550 mg of omega-3/day (1080 mg of eicosapentaenoic acid and 720 mg of docosahexaenoic acid) for three months (n = 32) and another that underwent nutrition guidance (n = 31). Phase angle and body cell mass were assessed for both groups and compared at the beginning of research (T0) and after our intervention (T1) for each group separately. Results: Phase angle averaged 6.45° ± 1.06 SD. The comparison between T0 and T1 showed a significant increase in phase angle and body cell mass, whereas the guidance group showed a decrease in body cell mass at T1 in relation to T0, with a significant p-value. Variance in phase angle between moments showed significant values between T0 and T1 in the supplementation group for all genders. Conclusion: Omega-3 positively modulated patients phase angle and body cell mass, but we emphasize the need for other studies that can solidify knowledge about supplementation dosage and intervention time.
基金grants from the Natural Science Foundation of Zhejiang Province,China(LTGN23C130001)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(2021JJLH0045)+1 种基金the State Key Laboratory of Rice Biology and Breeding-Independent Project,China(2023ZZKT20304)the China Agriculture Research System(CARS-01-14)。
文摘Plant architecture is a collection of major agronomic traits that determines rice grain production,and it is mainly influenced by tillering,tiller angle,plant height and panicle morphology(Wang and Li 2006).Tiller angle is one of the critical components that determines rice plant architecture,which in turn influences grain yield mainly due to its large impact on plant density(Wang et al.2022).
基金supported by the National Natural Science Foundation of China(Grant Nos.61888102 and 12374199)the National Key Research&Development Projects of China(Grant Nos.2022YFA1204100,2019YFA0308501,and 2021YFA1401300)+1 种基金the Chinese Academy of Sciences(Grant No.XDB33030100)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial inhomogeneity.However,only a few methods provide spatial-resolved information for characterizing local twist angle distribution.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890913)the Natural Science Foundation of Sichuan Province of China(Grant No.2023YFQ0111)。
文摘In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104414,12122412,12104464,and 12104413)the China Postdoctoral Science Foundation(Grant No.2021M702955).
文摘The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.
基金supported by the Joint Postdoc Scheme with Non-local Institutions of the Hong Kong Polytechnic University(Grant No.1-YY4P).
文摘Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural forms are shown,including the traditional smooth cylinder(P0),and the Terebridae-inspired cylinder with the helical angle of 30°(P_(30)),60°(P_(60)),and 90°(P_(90)).Computational fluid dynamics(CFD)method is adopted to solve the flow pass the Terebridae-inspired structures,and the vibration equation is solved using the Newmark-βmethod.The results show that for P_(30),P_(60) and P_(90),the VIV responses are effectively suppressed in the lock-in region,and P_(60) showed the best VIV suppression performance.The transverse amplitude and the downstream amplitude can be reduced by 82.67%and 91.43%respectively for P_(60) compared with that for P0,and the peak of the mean-drag coefficient is suppressed by 53.33%.The Q-criterion vortices of P_(30),P_(60),and P_(90) are destroyed,with irregular vortices shedding.It is also found that the boundary layer separation is located on the Terebridae-inspired ribs.The twisted ribs cause the separation point to constantly change along the spanwise direction,resulting in the development of the boundary layer separation being completely destroyed.The strength of the wake flow is significantly weakened for the Terebridae-inspired cylinder.
文摘Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.
文摘AIM:To investigate the association between juvenile open angle glaucoma(JOAG)and mental health among Koreans.METHODS:This study used nationally representative data from the 8th Korea National Health and Nutrition Examination Survey(KNHANES)2021.Glaucoma diagnosis followed the International Society of Geographical and Epidemiological Ophthalmology criteria based on glaucomatous structural defects,visual field defects,corrected vision,and intraocular pressure.As outcomes,suicidal behaviors,psychiatric counseling,and depression were evaluated through mental health questionnaires.Odds ratios(ORs)with 95%confidence intervals(CIs)were estimated using logistic regression models,adjusting for covariates.RESULTS:Among 7090 participants,3446 met the inclusion criteria for analysis,and 88(2.6%)were diagnosed with open angle glaucoma(OAG).After adjusting for age,sex,and best-corrected visual acuity(VA),participants with OAG were revealed to have significantly higher odds of suicidal behaviors(i.e.,ideation,planning,or attempts)compared with those without OAG(OR:2.70;95%CI:1.12-6.54;P=0.028).This association remained significant after further adjustments for socioeconomic status,lifestyle factors,and presence of chronic conditions(P=0.031 and 0.035,respectively).However,there was no significant difference for the other two outcomes,psychiatric counseling and depression.An age-stratified analysis revealed a stronger association between OAG and suicidal behaviors in younger JOAG participants(<40y)than in older OAG participants(≥40y;OR:3.80 vs 2.22;95%CI:0.79-18.22 vs 0.56-8.80,respectively).CONCLUSION:OAG patients show a higher risk of suicidal behaviors than those without glaucoma particularly in JOAG patients.
基金Supported by the National Natural Science Foundation of China(No.82301223No.82271102)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515111155)the Shenzhen Science and Technology Program(No.KCXFZ20211020163813019)the Shenzhen Science and Technology Program(No.RCBS20210706092347043).
文摘AIM:To investigate Omicron’s impact on clinical presentation of acute primary angle closure(APAC)in China.METHODS:A consecutive case series with historical controls was conducted at Shenzhen Eye Hospital,the largest specialized hospital in Shenzhen,China.Medical records from a two-month period during the Omicron pandemic(December 1,2022,to January 31,2023)were compared with records from two control groups(12/2018–1/2019 and 12/2021–1/2022)before pandemic.Patients with APAC were included,and the prevalence of APAC and demographic characteristics in Omicron-infected and noninfected patients were compared.RESULTS:Seventy-one(23.43%)out of 303 patients were diagnosed with APAC in the pandemic cohort,which was 2.98 and 2.61 times higher than that in control cohorts(7.87%in 2019,8.96%in 2022,P<0.001).The pandemic cohort has significantly higher Omicron-infected rate(78.87%vs 0 vs 0;P<0.001),lower proportion of glaucoma history(16.90%vs 42.86%vs 41.67%,P=0.005),higher surgical rate(95.77%vs 83.33%vs 78.57%,P=0.024),higher total medical costs and larger pupil diameter(5.63±0.15 vs 4.68±0.15 vs 4.69±0.22 mm,P<0.01).In 83%Omicron-infected patients,ocular symptoms appeared within 3d after systemic symptoms onset.In multivariate analysis,Omicron infection(P<0.001)was the only independent predictor of pupil diameter.CONCLUSION:In the Omicron epidemic in China,there is an increase of prevalence and severity of APAC,particularly focusing on the first 3d following infection.
基金supported by the National Key Research and Development Project of China(2022YFD1200700)the Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation,Innovation Program of Chinese Academy of Agricultural Sciences,and the China Agriculture Research System(CARS-03).
文摘Flag leaf angle is one of the key target traits in high yield wheat breeding.A smaller flag leaf angle reduces shading and enables plants to grow at a higher density,which increases yield.Here we identified a mutant,je0407,with an 84.34%-89.35%smaller flag leaf angle compared with the wild type.The mutant also had an abnormal lamina joint and no ligule or auricle.Genetic analysis indicated that the ligule was controlled by two recessive genes,which were mapped to chromosomes 2AS and 2DL.The mutant allele on chromosome 2AS was named Tafla1b,and it was fine mapped to a 1 Mb physical interval.The mutant allele on chr.2DL was identified as Taspl8b,a novel allele of TaSPL8 with a missense mutation in the second exon,which was used to develop a cleaved amplified polymorphic sequence marker.F3 and F4 lines derived from crosses between Jing411 and je0407 were genotyped to investigate interactions between the Tafla1b and Taspl8b alleles.Plants with the Tafla1b/Taspl8a genotype had 58.41%-82.76%smaller flag leaf angles,6.4%-24.9%shorter spikes,and a greater spikelet density(0.382 more spikelets per cm)compared with the wild type.Plants with the Tafla1a/Taspl8b genotype had 52.62%-82.24%smaller flag leaf angles and no differences in plant height or spikelet density compared with the wild type.Tafla1b/Taspl8b plants produced erect leaves with an abnormal lamina joint.The two alleles had dosage effects on ligule formation and flag leaf angle,but no significant effect on thousand-grain weight.The mutant alleles provide novel resources for improvement of wheat plant architecture.
基金National Natural Science Foundation of China (Nos.61871353 and 42006164)for their support。
文摘Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.
基金funded by National Natural Science Foundation,China(Grant Nos.41972264 and 42207214)Zhejiang Provincial Natural Science Foundation,China(Grant No.LR22E080002).
文摘Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.
文摘The purpose of this work is to shed light on the effect of the pivot position on the surface pressure distribution over a 3D wing in different flight conditions.The study is intended to support the design and development of aerospace vehicles where stability analysis,performance optimization,and aircraft design are of primary importance.The following parameters are considered:Mach numbers(M)of 1.3,1.8,2.3,2.8,3.3,and 3.8,angle of incidence(θ)in the range from 5°to 25°,pivot position from h=0.2 to 1.The results of the CFD numerical simulations match available analytical data,thereby providing evidence for the reliability of the used approach.The findings provide valuable insights into the relationship between the surface pressure distribution,the Mach number and the angle of incidence.
基金funded by the National Natural Science Foundation of China(Grant No.42377154).
文摘It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the influence of different fault angles on tunnel deformation.The Tabaiyi Tunnel,located in Yunnan Province of China passes through a multi-stage fault zone.The dynamic response characteristics of the surrounding rock in the Tabaiyi Tunnel were studied under various fault dip angles and the most unfavorable angle was identified.Physical model tests were conducted using two types of anchor cables with specific parameters.Additionally,a relationship between the engineering rock mass and energy absorption by the anchor cables was established,demonstrating the advantages of negative Poisson's ratio(NPR)anchor cables.Experimental results indicate that stress concentration tends to occur at the junctions between faults and the surrounding rock mass.Tunnels supported by NPR anchor cables effectively mitigate amplification effects,achieving energy absorption increases of up to 87%compared to positive Poisson's ratio(PR)anchor cables.Furthermore,the highest acceleration amplification was observed at a fault dip angle of 45°,with peak acceleration reaching twice that of the original input wave,indicating that this angle should be avoided in tunnel design.These findings provide valuable insights for the safe management of tunnels traversing fault zones.
基金Supported by the National Natural Science Foundation of China(No.81870692,No.82070959,No.82271082)the Shanghai Committee of Science and Technology,China(No.20S31905800)Clinical Research Plan of SHDC(No.SHDC2020CR6029).
文摘AIM:To directly quantify peroxynitrite(ONOO-)using a highly sensitive fluorescence resonance energy transfer probe RN-NA,investigate the association between ONOOand primary open angle glaucoma(POAG),and clarify whether RN-NA could be used as a potential tool for POAG diagnosis.METHODS:Plasma and aqueous humor(AH)samples were collected from POAG patients(n=100,age:59.70±6.87y)and age-related cataract(ARC)patients(n=100,age:61.15±4.60y)admitted to our hospital.Next,RN-NA was used to detect ONOO-in plasma and AH samples,and the relationship between ONOO-level and POAG was analyzed using binary logistic regression.Besides,Pearson correlation analysis was applied to characterize the correlation of the levels of ONOO-with the patients’age,intraocular pressure(IOP),and mean deviation of visual field testing.The ONOO-scavenger MnTMPyP was employed to treat the 3-morpholinosyndnomine(SIN-1)-induced ocular hypertension in mice(n=7,6-8wk).Finally,the IOP and ONOO-in both eyes were measured 30min after the last drug treatment.RESULTS:ONOO-levels of AH and plasma were significantly higher in the POAG group than in the ARC group(P<0.01).Additionally,ONOO-levels were closely correlated with POAG in a binary logistic regression analysis[odds ratio(OR)=1.008,95%confidence interval(CI):1.002-1.013,P<0.01 for AH;OR=1.004,95%CI:1.002-1.006,P<0.001 for plasma].Pearson correlation analysis showed that ONOO-levels in AH or plasma were positively associated with visual field defects(R=0.51,P<0.01 for AH;R=0.45,P<0.001 for plasma),and ONOO-levels in plasma and AH were correlated in the POAG group(R=0.69,P<0.001).However,administering MnTMPyP to mouse eyes reversed the elevated IOP caused by SIN-1(P<0.05).CONCLUSION:ONOO-levels in AH and plasma,detected by RN-NA,are significantly related to POAG and positively correlated with visual field defects in POAG patients.Hence,ONOO-is a potential biomarker of POAG,especially advanced POAG.Besides,anti-nitration compounds may be novel ocular hypotensive agents based on the animal study.
文摘The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.
文摘Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.