The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier...The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier anaerobic baffled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions, namely, feed strengths of 300-600 mg/L, HRTs of 9- 18 h, and temperatures of 10-28℃. Generally, SMP production increased with increasing feed strength and decreasing temperature. At high temperature (28℃), SMP production increased with decreasing HRT. As the temperature was decreased to 18 and 10℃, the SMP production was at its peak for 12 h HRT. Therefore, temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio was found at high temperature and long HRT because of complete volatile fatty acid degradation. SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR. As a secondary metabolite, some SMP could be consumed at lower feed strength.展开更多
Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the sa...Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carded out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested,展开更多
Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), a...Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.展开更多
An anaerobic baffled reactor is a system developed in recent decades and has been used as part of the treatment of high-strength wastewater. Since the function of this system is based on its hydrodynamic features, hyd...An anaerobic baffled reactor is a system developed in recent decades and has been used as part of the treatment of high-strength wastewater. Since the function of this system is based on its hydrodynamic features, hydrodynamics and the regime of the flow through the reactor are crucial. In this study, a prototype reactor with eight chambers, which had a total volume of 48 L, and a model reactor, whose dimensions were half of those of the prototype reactor, were used. The Froude dynamic similitude in these reactors was investigated. The results show that the curve dimensionless variances were 0.089 and 0.096 for the prototype and model reactors, respectively, the short-circuiting indices were 0.483 and 0.489 for the prototype and model reactors, respectively, the effective volume and short-circuiting index measurement errors were both 1%, the hydraulic efficiency error was 2%, and the Peclet and dispersion number errors were both 7%. Most of the compared indices were close to one another in value. Therefore, the model reactor can be used based on the Froude dynamic similitude to determine hydrodynamic charac-teristics of a baffled reactor at a full scale.展开更多
This review discusses high-strength wastewater treatment using anaerobic baffled reactors(ABRs)and modified ABRs.The research findings and applications of ABRs in treating various types of high strength wastewater gen...This review discusses high-strength wastewater treatment using anaerobic baffled reactors(ABRs)and modified ABRs.The research findings and applications of ABRs in treating various types of high strength wastewater generated from food companies,livestock,and industries were summarized and reported.Measurement parameters affecting the performance of ABRs are briefly discussed.The state-of-the-art laboratory studies are compiled and critically reviewed.Critical challenges and suggestions for future investigation are also addressed.展开更多
Anaerobic granular sludge is of key importance for highly effective operation of hybrid anaerobic baffled reactor(HABR).An observation and analysis on the composition of anaerobic granular sludge in each separation co...Anaerobic granular sludge is of key importance for highly effective operation of hybrid anaerobic baffled reactor(HABR).An observation and analysis on the composition of anaerobic granular sludge in each separation compartment of HABR was conducted by using scanning electron microscope(SEM)and molecular biotechnology,and specific methanogenic activity(SMA)and coenzyme F420 content were determined.It was indicated that the disparity of microbial composition was significant among these separation compartments of HABR,and the HABR encouraged phase separation.The results show the understanding of microbiological characteristics of anaerobic granular sludge in HABR is helpful for cultivating granular sludge,which ensures the effective operation of the reactor.展开更多
The feasibility of using anaerobic baffled reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented unde...The feasibility of using anaerobic baffled reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented under different peak flow factors (PFF of 1 to 6), superficial gas velocities (between 0.6 and 3.1 cm/hr) and hydraulic retention times (HRT) (24, 36 and 48 hr). Residence time distribution (RTD) analyses were carded out to investigate the hydraulic characteristics of the ABR. It was found that the PFF resulted in hydraulic dead space. The dead space did not exceed 13% at PFF of 1, 2 and 4 while there was 2-fold increase (26%) at PFF of 6. Superficial gas velocities did not result in more (biological) dead space. The mixing pattern of ABR tended to be a completely- mixed reactor when PFF increased. Superficial gas velocities did not affect mixing pattern. The effects of PFF on mixing pattern could be minimized by higher HRT (48 hr). The tank-in-series (TIS) model (N = 4) was suitable to describe the hydraulic behaviour of the studied system. The HRT of 48 hr was able to maintain the mixing pattern under different flow patterns, introducing satisfactory hydraulic efficiency. Chemical oxygen demand (COD) and total suspended solids (TSS) removals under all flow patterns were achieved more than 85% and 90%, respectively. The standard deviation of effluent COD and TSS concentration did not exceed 15 mg/L.展开更多
We investigated the performance of a 15.3 L capacity anaerobic baffled reactor (ABR) toward the treatment of low-strength domestic wastewater. The start- up period of the ABR was finished within approximately 130 da...We investigated the performance of a 15.3 L capacity anaerobic baffled reactor (ABR) toward the treatment of low-strength domestic wastewater. The start- up period of the ABR was finished within approximately 130 days at a temperature below 25~C. The average CODcr in the effluent was 165 mg.L 1 and the corresponding CODcr removal efficiency of the ABR was 52.3%. During the third stage (from day 130 to day 233) of ABR operation, the average CODcr in the effluent reached 71 mg· L^-1, which meets the secondary discharge requirement of the Integrated Wastewater Discharge Standard (GB 18918-2002, China). Moreover, partial microbial separa- tion was observed along the five ABR compartments through scanning electron microscopic images. The geometric mean diameter of bioparticles in the five compartments increased from 0.050 mm to 0.111, 0.107, 0.104, 0.110, and 0.103 mm during the start-up stage. After operation for 179days, the further increased to 0.376, corresponding diameters 0.225, 0.253, 0.239, and 0.288mm, respectively. The fractal dimensions of the bioparticles indicated that these particles have smoother surfaces and more compact structures during ABR operation. Morphological analysis of the bioparticle sections demonstrated that the bioparticles have a pore volume of 30%-55%. The highest porosity was observed for the bioparticles in the second ABR compartment, whereas the lowest fractal dimension ofbioparticle section was observed in the fifth compartment.展开更多
A novel hybrid anaerobic-contact oxidation biofilm baffled reactor (HAOBR) was developed to simultaneously remove nitrogenous and carbonaceous organic pollutants from decentralized molasses wastewater in the study. ...A novel hybrid anaerobic-contact oxidation biofilm baffled reactor (HAOBR) was developed to simultaneously remove nitrogenous and carbonaceous organic pollutants from decentralized molasses wastewater in the study. The study was based on the inoculation of anaerobic granule sludge in anaerobic compartments and the installation of combination filler in aerobic compartments. The performance of reactor system was studied regarding the hydraulic retention time (HRT), microbial characteristics and the gas water ratio (GWR). When the HRT was 24h and the GWR was 20:1, total ammonia and chemical oxygen demand (COD) of the effluent were reduced by 99% and 91.8%, respectively. The reactor performed stably for treating decentralized molasses wastewater. The good performance of the reactor can be attributed to the high resistance of COD and hydraulic shock loads. In addition, the high solid retention time of contact oxidation biofilm contributed to stable performance of the reactor.展开更多
This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesi...This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.展开更多
A study was carried out to evaluate the treatment efficiency of modified model of septic tank(ST)for the treatment of domestic wastewater.The objective was to explore the possibility of increasing the removal effici...A study was carried out to evaluate the treatment efficiency of modified model of septic tank(ST)for the treatment of domestic wastewater.The objective was to explore the possibility of increasing the removal efficiency,at household level,thereby reducing cost and treatment burden on city level treatment plants.For this purpose,a bench scale model of ST was prepared and operated continuously for 78 days at different detention times i.e.,48,24 and 12 h and at two reactor temperatures viz.15℃ and 25℃.Domestic wastewater was fed to the bench scale ST without pre-settling.Research was conducted under two different arrangements.Firstly,by installing baffles in the bench scale ST(called Run-1 setup),and secondly by installing perforated plates between the baffles(called Run-2 setup).Results demonstrated that Run-2 setup is better than Run-1 setup.Temperature significantly affects the efficiency.Detention time of 24 h was found feasible.Run-2 setup demonstrated a percentage BOD removal of 45%with effluent BOD of 113 mg·L^-1 at 15℃ and 85%removal with effluent BOD of 31 mg·L^-1 at 25℃.It is concluded that if a modified design of ST using Run-2 setup is provided at household level,the effluent coming out of the house will meet the National Environmental Quality Standards(NEQS)when reactor temperature is close to 25℃.Development authorities are suggested to change their by-laws and make modified ST mandatory for all households.This may significantly reduce the cost and footprint of city level wastewater treatment plants being planned.展开更多
文摘The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier anaerobic baffled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions, namely, feed strengths of 300-600 mg/L, HRTs of 9- 18 h, and temperatures of 10-28℃. Generally, SMP production increased with increasing feed strength and decreasing temperature. At high temperature (28℃), SMP production increased with decreasing HRT. As the temperature was decreased to 18 and 10℃, the SMP production was at its peak for 12 h HRT. Therefore, temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio was found at high temperature and long HRT because of complete volatile fatty acid degradation. SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR. As a secondary metabolite, some SMP could be consumed at lower feed strength.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No.2002AA601310).
文摘Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carded out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested,
基金project supported by the Science and Technology Department of Zhejiang Province (2005C13003).
文摘Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.
文摘An anaerobic baffled reactor is a system developed in recent decades and has been used as part of the treatment of high-strength wastewater. Since the function of this system is based on its hydrodynamic features, hydrodynamics and the regime of the flow through the reactor are crucial. In this study, a prototype reactor with eight chambers, which had a total volume of 48 L, and a model reactor, whose dimensions were half of those of the prototype reactor, were used. The Froude dynamic similitude in these reactors was investigated. The results show that the curve dimensionless variances were 0.089 and 0.096 for the prototype and model reactors, respectively, the short-circuiting indices were 0.483 and 0.489 for the prototype and model reactors, respectively, the effective volume and short-circuiting index measurement errors were both 1%, the hydraulic efficiency error was 2%, and the Peclet and dispersion number errors were both 7%. Most of the compared indices were close to one another in value. Therefore, the model reactor can be used based on the Froude dynamic similitude to determine hydrodynamic charac-teristics of a baffled reactor at a full scale.
文摘This review discusses high-strength wastewater treatment using anaerobic baffled reactors(ABRs)and modified ABRs.The research findings and applications of ABRs in treating various types of high strength wastewater generated from food companies,livestock,and industries were summarized and reported.Measurement parameters affecting the performance of ABRs are briefly discussed.The state-of-the-art laboratory studies are compiled and critically reviewed.Critical challenges and suggestions for future investigation are also addressed.
基金Innovation Foundation of Donghua University for PhD Candidates,China(No.BC200828)Shanghai Leading Academic Discipline Project,China(No.B064)
文摘Anaerobic granular sludge is of key importance for highly effective operation of hybrid anaerobic baffled reactor(HABR).An observation and analysis on the composition of anaerobic granular sludge in each separation compartment of HABR was conducted by using scanning electron microscope(SEM)and molecular biotechnology,and specific methanogenic activity(SMA)and coenzyme F420 content were determined.It was indicated that the disparity of microbial composition was significant among these separation compartments of HABR,and the HABR encouraged phase separation.The results show the understanding of microbiological characteristics of anaerobic granular sludge in HABR is helpful for cultivating granular sludge,which ensures the effective operation of the reactor.
基金supported by the Swiss National Centre of Competence in Research (NCCR) North-South:Research Partnerships for Mitigating Syndromes of Global Change, and the Swiss National Science Foundation and the Swiss Agency for Development and Cooperation
文摘The feasibility of using anaerobic baffled reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented under different peak flow factors (PFF of 1 to 6), superficial gas velocities (between 0.6 and 3.1 cm/hr) and hydraulic retention times (HRT) (24, 36 and 48 hr). Residence time distribution (RTD) analyses were carded out to investigate the hydraulic characteristics of the ABR. It was found that the PFF resulted in hydraulic dead space. The dead space did not exceed 13% at PFF of 1, 2 and 4 while there was 2-fold increase (26%) at PFF of 6. Superficial gas velocities did not result in more (biological) dead space. The mixing pattern of ABR tended to be a completely- mixed reactor when PFF increased. Superficial gas velocities did not affect mixing pattern. The effects of PFF on mixing pattern could be minimized by higher HRT (48 hr). The tank-in-series (TIS) model (N = 4) was suitable to describe the hydraulic behaviour of the studied system. The HRT of 48 hr was able to maintain the mixing pattern under different flow patterns, introducing satisfactory hydraulic efficiency. Chemical oxygen demand (COD) and total suspended solids (TSS) removals under all flow patterns were achieved more than 85% and 90%, respectively. The standard deviation of effluent COD and TSS concentration did not exceed 15 mg/L.
基金Acknowledgements This work was supported by the Fundamental Research Funds for the Central Universities (Nos. JC2011-1 and TD2010- 5), Major projects on control and rectification of water body pollution (No. 2008ZX07314-006-02), the National Natural Science Foundation of China (Grant Nos. 51078035 and 21177010), and the Ph.D. Programs Foundation of the Ministry of Education of China (No. 20100014110004).
文摘We investigated the performance of a 15.3 L capacity anaerobic baffled reactor (ABR) toward the treatment of low-strength domestic wastewater. The start- up period of the ABR was finished within approximately 130 days at a temperature below 25~C. The average CODcr in the effluent was 165 mg.L 1 and the corresponding CODcr removal efficiency of the ABR was 52.3%. During the third stage (from day 130 to day 233) of ABR operation, the average CODcr in the effluent reached 71 mg· L^-1, which meets the secondary discharge requirement of the Integrated Wastewater Discharge Standard (GB 18918-2002, China). Moreover, partial microbial separa- tion was observed along the five ABR compartments through scanning electron microscopic images. The geometric mean diameter of bioparticles in the five compartments increased from 0.050 mm to 0.111, 0.107, 0.104, 0.110, and 0.103 mm during the start-up stage. After operation for 179days, the further increased to 0.376, corresponding diameters 0.225, 0.253, 0.239, and 0.288mm, respectively. The fractal dimensions of the bioparticles indicated that these particles have smoother surfaces and more compact structures during ABR operation. Morphological analysis of the bioparticle sections demonstrated that the bioparticles have a pore volume of 30%-55%. The highest porosity was observed for the bioparticles in the second ABR compartment, whereas the lowest fractal dimension ofbioparticle section was observed in the fifth compartment.
基金This research was supported by the National High Technology Research and Development Program of China (Grant No. 2012BAJ21B04) and the National Natural Science Foundation of China (Grant No. 51108436).
文摘A novel hybrid anaerobic-contact oxidation biofilm baffled reactor (HAOBR) was developed to simultaneously remove nitrogenous and carbonaceous organic pollutants from decentralized molasses wastewater in the study. The study was based on the inoculation of anaerobic granule sludge in anaerobic compartments and the installation of combination filler in aerobic compartments. The performance of reactor system was studied regarding the hydraulic retention time (HRT), microbial characteristics and the gas water ratio (GWR). When the HRT was 24h and the GWR was 20:1, total ammonia and chemical oxygen demand (COD) of the effluent were reduced by 99% and 91.8%, respectively. The reactor performed stably for treating decentralized molasses wastewater. The good performance of the reactor can be attributed to the high resistance of COD and hydraulic shock loads. In addition, the high solid retention time of contact oxidation biofilm contributed to stable performance of the reactor.
文摘This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.
基金Funding by the University of Engineering&Technology,Lahore and support of lab staff
文摘A study was carried out to evaluate the treatment efficiency of modified model of septic tank(ST)for the treatment of domestic wastewater.The objective was to explore the possibility of increasing the removal efficiency,at household level,thereby reducing cost and treatment burden on city level treatment plants.For this purpose,a bench scale model of ST was prepared and operated continuously for 78 days at different detention times i.e.,48,24 and 12 h and at two reactor temperatures viz.15℃ and 25℃.Domestic wastewater was fed to the bench scale ST without pre-settling.Research was conducted under two different arrangements.Firstly,by installing baffles in the bench scale ST(called Run-1 setup),and secondly by installing perforated plates between the baffles(called Run-2 setup).Results demonstrated that Run-2 setup is better than Run-1 setup.Temperature significantly affects the efficiency.Detention time of 24 h was found feasible.Run-2 setup demonstrated a percentage BOD removal of 45%with effluent BOD of 113 mg·L^-1 at 15℃ and 85%removal with effluent BOD of 31 mg·L^-1 at 25℃.It is concluded that if a modified design of ST using Run-2 setup is provided at household level,the effluent coming out of the house will meet the National Environmental Quality Standards(NEQS)when reactor temperature is close to 25℃.Development authorities are suggested to change their by-laws and make modified ST mandatory for all households.This may significantly reduce the cost and footprint of city level wastewater treatment plants being planned.