Anaerobic oxidation of methane(AOM) is an important biogeochemical process, which has important scientific significance for global climate change and atmospheric evolution. This research examined the δ^(34)S, terrige...Anaerobic oxidation of methane(AOM) is an important biogeochemical process, which has important scientific significance for global climate change and atmospheric evolution. This research examined the δ^(34)S, terrigenous clastic indices of TiO_(2) and Al_(2)O_(3), and times for formation of the Ba front at site SH1, site SH3 and site 973-4 in the South China Sea. Three different coupling mechanisms of deposition rate and methane flux were discovered. The different coupling mechanisms had different effects on the role of AOM. At site 973-4, a high deposition rate caused a rapid vertical downward migration of the sulphate–methane transition zone(SMTZ), and the higher input resulted in mineral dissolution. At site SH3, the deposition rate and methane flux were basically in balance,so the SMTZ and paleo-SMTZ were the most stable of any site, and these were in a slow process of migration. At site SH1, the methane flux dominated the coupled mode, so the movement of the SMTZ at site SH1 was consistent with the general understanding. Understanding the factors influencing the SMTZ is important for understanding the early diagenesis process.展开更多
Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated...Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks.Here,we demonstrate that cold seep sediments,which are characterized by methane fluid seepage and a chemosynthetic ecosystem,effectively capture and accommodate small-scale(<100μm)MPs,with 16 types of MPs being detected.The abundance of MPs in the surface of the sediment is higher in methane-seepage locations than in non-seepage areas.Methane seepage is beneficial to the accumulation,fragmentation,increased diversity,and aging of MPs.In turn,the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide,which is associated with the anaerobic oxidation of methane(AOM).The efficiency of the AOM determines whether the seeping methane(which has a greenhouse effect 83 times greater than that of CO_(2)over a 20-year period)can enter the atmosphere,which is important to the global methane cycle,since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates.展开更多
Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. ...Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. This review summarizes and evaluates the present knowledge of effects of different states of Fe( ZVI,Fe( II),Fe( III)) on hydrogen and methane production in anaerobic digestion process. The potential promotion effects of iron oxides nanoparticles( IONPs),especially magnetite nanoparticles on anaerobic digestion are also mentioned. Fe plays important role in transporting electron,stimulating bacterial growth and increasing hydrogen and methane production rate by promoting enzyme activity. Adding Fe with different morphologies and valence states in anaerobic digestion to increase biogas( hydrogen and methane) production and enhance organic matter degradation simultaneously,which has attracted many scientists' attention in recent years. Rapid progress in this area has been made over the last few years,since Fe is essential to the fermentative hydrogen and methane production,while few is known about how Fe affects the fermentative biogas production. This review is significant to maintain the stable operation of the biogas project.展开更多
Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston ...Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston core(S3)and the application of a mass balance model are conducted to assess methane-associated biogeochemical reactions and uncover the relationship of methane in shallow sediment with gas hydrate reservoir at the Makran accretionary wedge off Pakistan.The results revealed that approximately 77%of sulfate is consumed by the predominant biogeochemical process of anaerobic oxidation of methane.However,the estimated sulfate-methane interface depth is-400 cm below sea floor with the methane diffusive flux of 0.039 mol/(m^(2)·a),suggesting the activity of methane seepage.Based on the δ^(13)C_(DIC) mass balance model combined with the contribution proportion of different dissolved inorganic carbon sources,this study calculated the δ^(13)C of the exogenous methane to be-57.9‰,indicating that the exogenous methane may be a mixture source,including thermogenic and biogenic methane.The study of pore water geochemistry at Makran accretionary wedge off Pakistan may have considerable implications for understanding the specific details on the dynamics of methane in cold seeps and provide important evidence for the potential occurrence of subsurface gas hydrate in this area.展开更多
Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies...Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies were monitored simultaneously during a 516-day incubation with lysimeter experiments. Two N sources (15N-(NH4)2SO4 and 15N-labeled milk vetch) were applied to two contrasting paddies: one derived from Xiashu loess (Loess) and one from Quaternary red clay (Clay). Both N2O and CH4 emissions were significantly higher in soil Clay than in soil Loess during the flooded period. For both soil, N2O emissions peaked at the transition periods shortly after the beginning of the flooded and non-flooded seasons. Soil type affected N2O emission patterns. In soil Clay, the emission peak during the transition period from non-flooded to flooded conditions was much higher than the peak during the transition period from flooded to non-flooded conditions. In soil Loess, the emission peak during the transition period from flooded to non-flooded conditions was obviously higher than the peak during the transition period from non-flooded to flooded conditions except for milk vetch treatment. Soil type also had a significant effect on CH4 emissions during the flooded season, over which the weighted average flux was 111 mg C m-2 h-1 and 2.2 mg C m-2 h-1 from Clay and Loess, respectively. Results indicated that it was the transition in the water regime that dominated N2O emissions while it was the soil type that dominated CH4 emissions during the flooded season. Anaerobic oxidation of methane possibly existed in soil Loess during the flooded season.展开更多
Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane(AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridiza...Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane(AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridization were used to investigate the microbial population.Sulfate-reducing bacteria(SRB)(e.g., Desulfotomaculum arcticum and Desulfobulbus propionicus)and anaerobic methanotrophic archaea(ANME)(e.g., Methanosaeta sp. and Methanolinea sp.)coexisted in the enrichment. The archaeal and bacterial cells were randomly or evenly distributed throughout the consortia. Accompanied by sulfate reduction, methane was oxidized anaerobically by the consortia of methane-oxidizing archaea and SRB. Moreover, CH_4 and SO_4^(2-) were consumed by methanotrophs and sulfate reducers with CO_2 and H_2S as products. The H_3CSH produced by methanotrophy was an intermediate product during the process. The methanotrophic enrichment was inoculated in a down-flow biofilter for the treatment of methane and H_2S from a landfill site. On average, 93.33% of H_2S and 10.71% of methane was successfully reduced in the biofilter. This study tries to provide effective method for the synergistic treatment of waste gas containing sulfur compounds and CH_4.展开更多
Colloform pyrite with core-rim texture is commonly deposited in carbonate platforms associated with the sulfide ores such as the Caixiashan Pb-Zn deposit.However,the genesis of colloform pyrite in Pb-Zn deposits,its g...Colloform pyrite with core-rim texture is commonly deposited in carbonate platforms associated with the sulfide ores such as the Caixiashan Pb-Zn deposit.However,the genesis of colloform pyrite in Pb-Zn deposits,its growth controls and their geological implication are insufficiently understood.Integration of in-situ trace element and SIMS sulfur isotopes has revealed geochemical variations among these pyrite layers.These colloform pyrite occur as residual phases of core-rim aggregates,the cores are made up of very fine-grained anhedral pyrite particles,with some rims being made up of fine-grained and poorlycrystallized pyrite,while the other rims were featured with euhedral cubic pyrite.which are cemented by fine-grained calcite and/or dolomite with minor quartz.Sulfur isotope analysis shows that some wellpreserved rims have negative δ^34 S values(-28.12‰to-0.49‰),whereas most of the cores and rims have positive δ^34 S values(>0 to+44.28‰;peak at+14.91‰).Integrating with the methane and sulfate were observed in previous fluid inclusion study,we suggest that the 34 S depleted rims were initially formed by bacteria sulfate reduction(BSR),whereas the positive δ^34 S values were resulted from the sulfate reduction driven by anaerobic methane oxidation(AOM).The well-developed authigenic pyrite and calcite may also support the reaction of AOM.Combined with petrographic observations,trace element composition of the colloform pyrite reveals the incorporation and precipitation behavior of those high abundance elements in the pyrite:Pb and Zn were present as mineral inclusion and likely precipitated before Fe,as supported by the time-resolved Pb-Zn signal spikes in most of the analyzed pyrite grains.Other metals,such as Hg,Co and Ni,may have migrated as chloride complexes and entered the pyrite lattice.Arsenic and Sb,generally influenced by complex-forming reactions rather than substitution ones,could also enter the pyrite lattice,or slightly predate the precipitation of colloform pyrite as mineral inclusions,which are controlled by their hydrolysis constant in the ore fluids.The colloform pyrite may have grown inward from the rims.The successive BSR reaction process would enrich H^32/2S in the overlying water column but reduce the metal content,the nucleation of these pyrite rims was featured by strongly negative sulfur isotopes.The following AOM process should be activated by deformation like the turbidity sediment of the mudstone as the sulfide deposition are associated with fault activities that caused the emission of methane migration upward and simultaneously replenishing the metal in the column.The higher AOM reaction rate and the higher metal supply(not only Fe.but with minor other metals such as Pb and Zn) caused by sediment movement enhanced the metal concentration within the pyrite lattice.展开更多
Authigenic gypsum crystals, along with pyrite and carbonate mineralization, predominantly calcites were noticed in distinct intervals in a 32 m long piston core, collected in the gas hydratebearing sediments in the no...Authigenic gypsum crystals, along with pyrite and carbonate mineralization, predominantly calcites were noticed in distinct intervals in a 32 m long piston core, collected in the gas hydratebearing sediments in the northern portion of the Krishna-Godavari basin, eastern continental margin of India at a water depth of 1691 m. X-ray diffraction and energy dispersive spectrum studies confirm presence of pyrite, gypsum, calcite, and other mineral aggregates. The occurrence of gypsum in such deep sea environment is intriguing, because gypsum is a classical evaporite mineral and is under saturated with respect to sea water. Sedimentological, geochemical evidences point to diagenetic formation of the gypsum due to oxidation of sulphide minerals (i.e. pyrite). Euhedral, transparent gypsum crystals, with pyrite inclusions are cemented with authigenic carbonates, possibly indicating that they were formed authigenically in situ in the gas hydrate-influenced environment due to late burial diagenesis involving sulphate reduction and anaerobic oxidation of methane (AOM). Therefore, the authigenic gypsums found in sediments of the Krishna-Godavari and Mahanadi offshore regions could be seen as one of the parameters to imply the presence of high methane flux possibly from gas hydrate at depth.展开更多
The concentrations of CH4 and SO42? in pore-water and the carbon isotope compositions of total dissolved inorganic (ΣCO2) and CH4 were de- termined for three coastal sedimentary cores col- lected from Qi’ao Island (...The concentrations of CH4 and SO42? in pore-water and the carbon isotope compositions of total dissolved inorganic (ΣCO2) and CH4 were de- termined for three coastal sedimentary cores col- lected from Qi’ao Island (Pearl River Estuary), southern China. Results show that methane concen- tration changes dramatically at the base of the sul- fate-reducing zone and sulfate concentration gradi- ents are linear for all stations. In addition, the carbon isotope of methane becomes heavier at the sul- fate-methane transition (SMT), which causes ΣCO2-δ 13C to become the minimum. The geo- chemical profiles of pore-water render indirect evi- dence for anaerobic oxidation of methane (AOM). Based on numerical modeling of AOM and sul- fate-reducing rates, the portion of total sulfate reduc- tion occurring via AOM is 9.0%, 84% and 45.5%, re- spectively, and the percentage of ΣCO2 added to the pore-water is 4.7%, 72.4% and 29.45% correspond- ingly for three sites. Furthermore, it is found that the methane concentration, methane diffusive flux and the depth of SMT are controlled by the quantity and quality of sedimentary organic matter incorporated into the sediments. The great amount of organic material is favorable for rapid depletion of sulfate via sedimentary organic matter degradation, and on the other hand, causes the increase of the methane flux in the SMT, which results in a portion of sulfate re-duction supported by AOM. Accordingly, the SMT was shifted towards the sediment surface.展开更多
The well-preserved Mesoproterozoic succession in the North China platform consists mainly of three iithological associations including peritidal quartz sandstone, shallow marine and lagoonal dark to black shales, and ...The well-preserved Mesoproterozoic succession in the North China platform consists mainly of three iithological associations including peritidal quartz sandstone, shallow marine and lagoonal dark to black shales, and shallow epeiric carbonates, with a total thickness of up to 8 000 m. In addition to well-documented microplants, macroalgae, and microbial buildups, abundant microbially induced sedimentary structures (MISS) and mat-related sediments have been recognized in these rocks. Intensive microbial mat layers and MISS are especially well preserved in the carbonates of the upper Gaoyuzhuang (高于庄) (ca. 1.5 Ga) and lower Wumishan (雾迷山) (ca. 1.45 Ga) formations, indicating diversified microbial activities and a high organic production. In these petrified biomats, putative microbial fossils (both coccoidal and filamentous) and framboidal pyrites have been identified. The abundance of authigenic carbonate minerals in the host rocks, such as, acicular aragonites, rosette barites, radial siderites, ankerites, and botryoidal carbonate cements, suggests authigenic carbonate precipitation from anaerobic oxidation of methane (AOM) under anoxic/euxinic conditions. Warm climate and anoxic/euxinic conditions in the Mesoproterozoic oceans may have facilitated high microbial productivity and organic burial in sediments. Although authigenic carbonate cements may record carbonate precipitation from anaerobic methane oxidation, gas blister (or dome) structures may indicate gas release from active methanogenesis during shallow burial. Bituminous fragments in mat-related carbonates also provide evidence for hydrocarbon generation. Under proper conditions, the Mesoproterozoic mat-rich carbonates will have the potential for hydrocarbon generation and serve as source rocks. On the basis of petrified biomats, a rough estimation suggests that the Mesoproterozoic carbonates of the North China platform might have a hydrocarbon production potential in the order of 10 ×10^8 t.展开更多
基金The Guangdong Basic and Applied Basic Research Fund Project under contract No.2021A1515011509the Municipal Science and Technology Program of Guangzhou under contract No.201904010311the Special Project for Marine Economy Development of Guangdong Province under contract No.GDME-2018D002。
文摘Anaerobic oxidation of methane(AOM) is an important biogeochemical process, which has important scientific significance for global climate change and atmospheric evolution. This research examined the δ^(34)S, terrigenous clastic indices of TiO_(2) and Al_(2)O_(3), and times for formation of the Ba front at site SH1, site SH3 and site 973-4 in the South China Sea. Three different coupling mechanisms of deposition rate and methane flux were discovered. The different coupling mechanisms had different effects on the role of AOM. At site 973-4, a high deposition rate caused a rapid vertical downward migration of the sulphate–methane transition zone(SMTZ), and the higher input resulted in mineral dissolution. At site SH3, the deposition rate and methane flux were basically in balance,so the SMTZ and paleo-SMTZ were the most stable of any site, and these were in a slow process of migration. At site SH1, the methane flux dominated the coupled mode, so the movement of the SMTZ at site SH1 was consistent with the general understanding. Understanding the factors influencing the SMTZ is important for understanding the early diagenesis process.
基金financially supported by the National Natural Science Foundation of China(42022046)the National Key Research and Development Program of China(2021YFF0502300)+1 种基金the Key Special Project for Introduced Talent Teams of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0403 and GML2019ZD0401)Guangdong Natural Resources Foundation(GDNRC[2022]45)。
文摘Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks.Here,we demonstrate that cold seep sediments,which are characterized by methane fluid seepage and a chemosynthetic ecosystem,effectively capture and accommodate small-scale(<100μm)MPs,with 16 types of MPs being detected.The abundance of MPs in the surface of the sediment is higher in methane-seepage locations than in non-seepage areas.Methane seepage is beneficial to the accumulation,fragmentation,increased diversity,and aging of MPs.In turn,the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide,which is associated with the anaerobic oxidation of methane(AOM).The efficiency of the AOM determines whether the seeping methane(which has a greenhouse effect 83 times greater than that of CO_(2)over a 20-year period)can enter the atmosphere,which is important to the global methane cycle,since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates.
基金Sponsored by the National Natural Science Foundation for Youth of China(Grant No.51308149)Major Science and Technology Program for Water Pollution Control Treatment(Grant No.2014ZX07201-012+1 种基金2013ZX07201007-001)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(Grant No.2014TS08)
文摘Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. This review summarizes and evaluates the present knowledge of effects of different states of Fe( ZVI,Fe( II),Fe( III)) on hydrogen and methane production in anaerobic digestion process. The potential promotion effects of iron oxides nanoparticles( IONPs),especially magnetite nanoparticles on anaerobic digestion are also mentioned. Fe plays important role in transporting electron,stimulating bacterial growth and increasing hydrogen and methane production rate by promoting enzyme activity. Adding Fe with different morphologies and valence states in anaerobic digestion to increase biogas( hydrogen and methane) production and enhance organic matter degradation simultaneously,which has attracted many scientists' attention in recent years. Rapid progress in this area has been made over the last few years,since Fe is essential to the fermentative hydrogen and methane production,while few is known about how Fe affects the fermentative biogas production. This review is significant to maintain the stable operation of the biogas project.
基金The National Natural Science Foundation of China under contract Nos 41606087,91858208,and 42076069the Taishan Scholar Special Experts Project under contract No.TS201712079+1 种基金the National Key Basic Research and Development Program of China under contract No.2017YFC0307704the Marine Geological Survey Program of China Geological Survey under contract Nos DD20190518 and DD20190819。
文摘Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston core(S3)and the application of a mass balance model are conducted to assess methane-associated biogeochemical reactions and uncover the relationship of methane in shallow sediment with gas hydrate reservoir at the Makran accretionary wedge off Pakistan.The results revealed that approximately 77%of sulfate is consumed by the predominant biogeochemical process of anaerobic oxidation of methane.However,the estimated sulfate-methane interface depth is-400 cm below sea floor with the methane diffusive flux of 0.039 mol/(m^(2)·a),suggesting the activity of methane seepage.Based on the δ^(13)C_(DIC) mass balance model combined with the contribution proportion of different dissolved inorganic carbon sources,this study calculated the δ^(13)C of the exogenous methane to be-57.9‰,indicating that the exogenous methane may be a mixture source,including thermogenic and biogenic methane.The study of pore water geochemistry at Makran accretionary wedge off Pakistan may have considerable implications for understanding the specific details on the dynamics of methane in cold seeps and provide important evidence for the potential occurrence of subsurface gas hydrate in this area.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390080 and 30390081).
文摘Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies were monitored simultaneously during a 516-day incubation with lysimeter experiments. Two N sources (15N-(NH4)2SO4 and 15N-labeled milk vetch) were applied to two contrasting paddies: one derived from Xiashu loess (Loess) and one from Quaternary red clay (Clay). Both N2O and CH4 emissions were significantly higher in soil Clay than in soil Loess during the flooded period. For both soil, N2O emissions peaked at the transition periods shortly after the beginning of the flooded and non-flooded seasons. Soil type affected N2O emission patterns. In soil Clay, the emission peak during the transition period from non-flooded to flooded conditions was much higher than the peak during the transition period from flooded to non-flooded conditions. In soil Loess, the emission peak during the transition period from flooded to non-flooded conditions was obviously higher than the peak during the transition period from non-flooded to flooded conditions except for milk vetch treatment. Soil type also had a significant effect on CH4 emissions during the flooded season, over which the weighted average flux was 111 mg C m-2 h-1 and 2.2 mg C m-2 h-1 from Clay and Loess, respectively. Results indicated that it was the transition in the water regime that dominated N2O emissions while it was the soil type that dominated CH4 emissions during the flooded season. Anaerobic oxidation of methane possibly existed in soil Loess during the flooded season.
基金financially supported by the National Natural Science Foundation of China (Nos.51478456 and 51178451)
文摘Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane(AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridization were used to investigate the microbial population.Sulfate-reducing bacteria(SRB)(e.g., Desulfotomaculum arcticum and Desulfobulbus propionicus)and anaerobic methanotrophic archaea(ANME)(e.g., Methanosaeta sp. and Methanolinea sp.)coexisted in the enrichment. The archaeal and bacterial cells were randomly or evenly distributed throughout the consortia. Accompanied by sulfate reduction, methane was oxidized anaerobically by the consortia of methane-oxidizing archaea and SRB. Moreover, CH_4 and SO_4^(2-) were consumed by methanotrophs and sulfate reducers with CO_2 and H_2S as products. The H_3CSH produced by methanotrophy was an intermediate product during the process. The methanotrophic enrichment was inoculated in a down-flow biofilter for the treatment of methane and H_2S from a landfill site. On average, 93.33% of H_2S and 10.71% of methane was successfully reduced in the biofilter. This study tries to provide effective method for the synergistic treatment of waste gas containing sulfur compounds and CH_4.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41702067 and 41602067)National Key Research and Development Program of China(Grant No.2018YFC0603603)+1 种基金Natural Science Foundation of Guangdong Province(Grant No.2017A0303113246)the Fundamental Research Funds for the Central Universities(171gpy63 and 181gpy25)
文摘Colloform pyrite with core-rim texture is commonly deposited in carbonate platforms associated with the sulfide ores such as the Caixiashan Pb-Zn deposit.However,the genesis of colloform pyrite in Pb-Zn deposits,its growth controls and their geological implication are insufficiently understood.Integration of in-situ trace element and SIMS sulfur isotopes has revealed geochemical variations among these pyrite layers.These colloform pyrite occur as residual phases of core-rim aggregates,the cores are made up of very fine-grained anhedral pyrite particles,with some rims being made up of fine-grained and poorlycrystallized pyrite,while the other rims were featured with euhedral cubic pyrite.which are cemented by fine-grained calcite and/or dolomite with minor quartz.Sulfur isotope analysis shows that some wellpreserved rims have negative δ^34 S values(-28.12‰to-0.49‰),whereas most of the cores and rims have positive δ^34 S values(>0 to+44.28‰;peak at+14.91‰).Integrating with the methane and sulfate were observed in previous fluid inclusion study,we suggest that the 34 S depleted rims were initially formed by bacteria sulfate reduction(BSR),whereas the positive δ^34 S values were resulted from the sulfate reduction driven by anaerobic methane oxidation(AOM).The well-developed authigenic pyrite and calcite may also support the reaction of AOM.Combined with petrographic observations,trace element composition of the colloform pyrite reveals the incorporation and precipitation behavior of those high abundance elements in the pyrite:Pb and Zn were present as mineral inclusion and likely precipitated before Fe,as supported by the time-resolved Pb-Zn signal spikes in most of the analyzed pyrite grains.Other metals,such as Hg,Co and Ni,may have migrated as chloride complexes and entered the pyrite lattice.Arsenic and Sb,generally influenced by complex-forming reactions rather than substitution ones,could also enter the pyrite lattice,or slightly predate the precipitation of colloform pyrite as mineral inclusions,which are controlled by their hydrolysis constant in the ore fluids.The colloform pyrite may have grown inward from the rims.The successive BSR reaction process would enrich H^32/2S in the overlying water column but reduce the metal content,the nucleation of these pyrite rims was featured by strongly negative sulfur isotopes.The following AOM process should be activated by deformation like the turbidity sediment of the mudstone as the sulfide deposition are associated with fault activities that caused the emission of methane migration upward and simultaneously replenishing the metal in the column.The higher AOM reaction rate and the higher metal supply(not only Fe.but with minor other metals such as Pb and Zn) caused by sediment movement enhanced the metal concentration within the pyrite lattice.
基金funded by National Gas Hydrate Program (NGHP), India
文摘Authigenic gypsum crystals, along with pyrite and carbonate mineralization, predominantly calcites were noticed in distinct intervals in a 32 m long piston core, collected in the gas hydratebearing sediments in the northern portion of the Krishna-Godavari basin, eastern continental margin of India at a water depth of 1691 m. X-ray diffraction and energy dispersive spectrum studies confirm presence of pyrite, gypsum, calcite, and other mineral aggregates. The occurrence of gypsum in such deep sea environment is intriguing, because gypsum is a classical evaporite mineral and is under saturated with respect to sea water. Sedimentological, geochemical evidences point to diagenetic formation of the gypsum due to oxidation of sulphide minerals (i.e. pyrite). Euhedral, transparent gypsum crystals, with pyrite inclusions are cemented with authigenic carbonates, possibly indicating that they were formed authigenically in situ in the gas hydrate-influenced environment due to late burial diagenesis involving sulphate reduction and anaerobic oxidation of methane (AOM). Therefore, the authigenic gypsums found in sediments of the Krishna-Godavari and Mahanadi offshore regions could be seen as one of the parameters to imply the presence of high methane flux possibly from gas hydrate at depth.
文摘The concentrations of CH4 and SO42? in pore-water and the carbon isotope compositions of total dissolved inorganic (ΣCO2) and CH4 were de- termined for three coastal sedimentary cores col- lected from Qi’ao Island (Pearl River Estuary), southern China. Results show that methane concen- tration changes dramatically at the base of the sul- fate-reducing zone and sulfate concentration gradi- ents are linear for all stations. In addition, the carbon isotope of methane becomes heavier at the sul- fate-methane transition (SMT), which causes ΣCO2-δ 13C to become the minimum. The geo- chemical profiles of pore-water render indirect evi- dence for anaerobic oxidation of methane (AOM). Based on numerical modeling of AOM and sul- fate-reducing rates, the portion of total sulfate reduc- tion occurring via AOM is 9.0%, 84% and 45.5%, re- spectively, and the percentage of ΣCO2 added to the pore-water is 4.7%, 72.4% and 29.45% correspond- ingly for three sites. Furthermore, it is found that the methane concentration, methane diffusive flux and the depth of SMT are controlled by the quantity and quality of sedimentary organic matter incorporated into the sediments. The great amount of organic material is favorable for rapid depletion of sulfate via sedimentary organic matter degradation, and on the other hand, causes the increase of the methane flux in the SMT, which results in a portion of sulfate re-duction supported by AOM. Accordingly, the SMT was shifted towards the sediment surface.
基金supported by the SINOPEC project (G0800-06-ZS-319)the National Natural Science Foundation of China (No. 40621002)the Ministry of Education of China (IRT00546, B0711)
文摘The well-preserved Mesoproterozoic succession in the North China platform consists mainly of three iithological associations including peritidal quartz sandstone, shallow marine and lagoonal dark to black shales, and shallow epeiric carbonates, with a total thickness of up to 8 000 m. In addition to well-documented microplants, macroalgae, and microbial buildups, abundant microbially induced sedimentary structures (MISS) and mat-related sediments have been recognized in these rocks. Intensive microbial mat layers and MISS are especially well preserved in the carbonates of the upper Gaoyuzhuang (高于庄) (ca. 1.5 Ga) and lower Wumishan (雾迷山) (ca. 1.45 Ga) formations, indicating diversified microbial activities and a high organic production. In these petrified biomats, putative microbial fossils (both coccoidal and filamentous) and framboidal pyrites have been identified. The abundance of authigenic carbonate minerals in the host rocks, such as, acicular aragonites, rosette barites, radial siderites, ankerites, and botryoidal carbonate cements, suggests authigenic carbonate precipitation from anaerobic oxidation of methane (AOM) under anoxic/euxinic conditions. Warm climate and anoxic/euxinic conditions in the Mesoproterozoic oceans may have facilitated high microbial productivity and organic burial in sediments. Although authigenic carbonate cements may record carbonate precipitation from anaerobic methane oxidation, gas blister (or dome) structures may indicate gas release from active methanogenesis during shallow burial. Bituminous fragments in mat-related carbonates also provide evidence for hydrocarbon generation. Under proper conditions, the Mesoproterozoic mat-rich carbonates will have the potential for hydrocarbon generation and serve as source rocks. On the basis of petrified biomats, a rough estimation suggests that the Mesoproterozoic carbonates of the North China platform might have a hydrocarbon production potential in the order of 10 ×10^8 t.