期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biodegradation of tetrabromobisphenol A in the sewage sludge process
1
作者 Xingxing Peng Zhangna Wang +2 位作者 Dongyang Wei Qiyuan Huang Xiaoshan Jia 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第11期39-48,共10页
Anaerobic sewage sludge capable of rapidly degrading tetrabromobisphenol A(TBBPA) was successfully acclimated in an anaerobic reactor over 280 days. During the period from 0 to 280 days, the TBBPA degradation rate... Anaerobic sewage sludge capable of rapidly degrading tetrabromobisphenol A(TBBPA) was successfully acclimated in an anaerobic reactor over 280 days. During the period from 0 to 280 days, the TBBPA degradation rate(DR), utilization of glucose, and VSS were monitored continuously. After 280 days of acclimation, the TBBPA DR of active sludge reached 96.0% after 20 days of treatment in batch experiments. Based on scanning electron microscopy(SEM) observations and denaturing gradient gel electrophoresis(DGGE) determinations,the diversity of the microorganisms after 0 and 280 days in the acclimated anaerobic sewage sludge was compared. Furthermore, eleven metabolites, including 2-bromophenol,3-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, tribromophenol and bisphenol A,were identified by gas chromatography–mass spectrometry(GC–MS). Moreover, the six primary intermediary metabolites were also well-degraded by the acclimated anaerobic sewage sludge to varying degrees. Among the six target metabolites, tribromophenol was the most preferred substrate for biodegradation via debromination. These metabolites degraded more rapidly than monobromide and bisphenol A. The biodegradation data of the intermediary metabolites exhibited a good fit to a pseudo-first-order model.Finally, based on the metabolites, metabolic pathways were proposed. In conclusion, the acclimated microbial consortia degraded TBBPA and its metabolites well under anaerobic conditions. 展开更多
关键词 Tetrabromobisphenol A BIODEGRADATION METABOLITES anaerobic sewage sludge PATHWAYS
原文传递
Determination of the archaeal and bacterial communities in two-phase and single-stage anaerobic systems by 454 pyrosequencing 被引量:5
2
作者 Yogananda Maspolim Yan Zhou +2 位作者 Chenghong Guo Keke Xiao Wun Jern Ng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期121-129,共9页
2-Phase anaerobic digestion(AD), where the acidogenic phase was operated at 2 day hydraulic retention time(HRT) and the methanogenic phase at 10 days HRT, had been evaluated to determine if it could provide higher... 2-Phase anaerobic digestion(AD), where the acidogenic phase was operated at 2 day hydraulic retention time(HRT) and the methanogenic phase at 10 days HRT, had been evaluated to determine if it could provide higher organic reduction and methane production than the conventional single-stage AD(also operated at 12 days HRT). 454 pyrosequencing was performed to determine and compare the microbial communities. The acidogenic reactor of the 2-phase system yielded a unique bacterial community of the lowest richness and diversity, while bacterial profiles of the methanogenic reactor closely followed the single-stage reactor. All reactors were predominated by hydrogenotrophic methanogens, mainly Methanolinea. Unusually, the acidogenic reactor contributed up to 24%of total methane production in the 2-phase system. This could be explained by the presence of Methanosarcina and Methanobrevibacter, and their activities could also help regulate reactor alkalinity during high loading conditions through carbon dioxide production. The enrichment of hydrolytic and acidogenic Porphyromonadaceae, Prevotellaceae, Ruminococcaceae and unclassified Bacteroidetes in the acidogenic reactor would have contributed to the improved sludge volatile solids degradation, and ultimately the overall 2-phase system's performance. Syntrophic acetogenic microorganisms were absent in the acidogenic reactor but present in the downstream methanogenic reactor, indicating the retention of various metabolic pathways also found in a single-stage system. The determination of key microorganisms further expands our understanding of the complex biological functions in AD process. 展开更多
关键词 sewage sludge 2-Phase anaerobic digestion Microbial community 454 pyrosequencing Methanogen
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部