This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describe...This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describes the principle, system configuration and hardware design.展开更多
This paper proposes novel floating-gate MOSFET (FGMOS) based Voltage Buffer, Analog Inverter and Winner-Take-All (WTA) circuits. The proposed circuits have low power dissipation. All proposed circuits are simulated us...This paper proposes novel floating-gate MOSFET (FGMOS) based Voltage Buffer, Analog Inverter and Winner-Take-All (WTA) circuits. The proposed circuits have low power dissipation. All proposed circuits are simulated using SPICE in 180 nm CMOS technology with supply voltages of ±1.25 V. The simulation results demonstrate increase in input range for FGMOS based voltage buffer and analog inverter and maximum power dissipation of 0.5 mW, 1.9 mW and 0.429 mW for FGMOS based voltage buffer, analog inverter and WTA circuits, respectively. The proposed circuits are intended to find applications in low voltage, low power consumer electronics.展开更多
An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging ...An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging condition, the optical part can be easily influenced by many factors, such as the fluctuation of ambient temperature or driving current resulting in instability of the wavelength and intensity for the laser; for dual-beam sensor, the different bends and stresses of^the optical fiber will lead to the fluctuation of the intensity and phase; the intensity noise from the collimator, coupler, and other optical devices in the system will also result in the impurity of the optical part based signal source. In order to dramatically improve the debugging efficiency of the detection circuit and shorten the period of research and development, this paper describes an analog signal source, consisting of a single chip microcomputer (SCM), an amplifier circuit, and a voltage-to-current conversion circuit. It can be used to realize the rapid debugging detection circuit of the optical fiber gas sensor instead of optical part based signal source. This analog signal source performs well with many other advantages, such as the simple operation, small size, and light weight.展开更多
The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model ...The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.展开更多
Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the numbe...Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the number of structural faults which need to be simulated at circuit-level. The purpose of this paper is to propose a novel fault list compression technique by defining a stratified fault list, build with a set of “representative” faults, one per stratum. Criteria to partition the fault list in strata, and to identify representative faults are presented and discussed. A fault representativeness metric is proposed, based on an error probability. The proposed methodology allows different tradeoffs between fault list compression and fault representation accuracy. These tradeoffs may be optimized for each test preparation phase. The fault representativeness vs. fault list compression tradeoff is evaluated with an industrial case study—a DC-DC (switched buck converter). Although the methodology is presented in this paper using a very simple fault model, it may be easily extended to be used with more elaborate fault models. The proposed technique is a significant contribution to make mixed-signal fault simulation cost-effective as part of the production test preparation.展开更多
磁敏位置传感系统广泛应用于汽车、高端装备和先进制造等领域中。文中设计了一种基于霍尔效应的位置传感系统,可以实现被测物旋转角度的检测。该系统通过由线性霍尔芯片和磁铁组成的传感模块获取旋转角度信息,经信号调理电路处理后由12 ...磁敏位置传感系统广泛应用于汽车、高端装备和先进制造等领域中。文中设计了一种基于霍尔效应的位置传感系统,可以实现被测物旋转角度的检测。该系统通过由线性霍尔芯片和磁铁组成的传感模块获取旋转角度信息,经信号调理电路处理后由12 bit ADC采样转换为数字信号,FPGA读取数据并采用拟合、标准化等算法校准,再利用Cordic算法计算得到被测物旋转角度,最后通过串口屏将测量结果显示。测试结果表明该位置传感系统精度较高,测得的旋转角度误差小于2°。展开更多
基金This work was supported by the National Meg-Science Engineering Project of the Chinese Government.
文摘This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describes the principle, system configuration and hardware design.
文摘This paper proposes novel floating-gate MOSFET (FGMOS) based Voltage Buffer, Analog Inverter and Winner-Take-All (WTA) circuits. The proposed circuits have low power dissipation. All proposed circuits are simulated using SPICE in 180 nm CMOS technology with supply voltages of ±1.25 V. The simulation results demonstrate increase in input range for FGMOS based voltage buffer and analog inverter and maximum power dissipation of 0.5 mW, 1.9 mW and 0.429 mW for FGMOS based voltage buffer, analog inverter and WTA circuits, respectively. The proposed circuits are intended to find applications in low voltage, low power consumer electronics.
基金This work was supported by the Natural Science Foundation of China (60977058) and the Fundamental Research Funds of Shandong University (2014YQ011).
文摘An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging condition, the optical part can be easily influenced by many factors, such as the fluctuation of ambient temperature or driving current resulting in instability of the wavelength and intensity for the laser; for dual-beam sensor, the different bends and stresses of^the optical fiber will lead to the fluctuation of the intensity and phase; the intensity noise from the collimator, coupler, and other optical devices in the system will also result in the impurity of the optical part based signal source. In order to dramatically improve the debugging efficiency of the detection circuit and shorten the period of research and development, this paper describes an analog signal source, consisting of a single chip microcomputer (SCM), an amplifier circuit, and a voltage-to-current conversion circuit. It can be used to realize the rapid debugging detection circuit of the optical fiber gas sensor instead of optical part based signal source. This analog signal source performs well with many other advantages, such as the simple operation, small size, and light weight.
基金supported by the National Natural Science Foundation of China(61172159)
文摘The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.
文摘Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the number of structural faults which need to be simulated at circuit-level. The purpose of this paper is to propose a novel fault list compression technique by defining a stratified fault list, build with a set of “representative” faults, one per stratum. Criteria to partition the fault list in strata, and to identify representative faults are presented and discussed. A fault representativeness metric is proposed, based on an error probability. The proposed methodology allows different tradeoffs between fault list compression and fault representation accuracy. These tradeoffs may be optimized for each test preparation phase. The fault representativeness vs. fault list compression tradeoff is evaluated with an industrial case study—a DC-DC (switched buck converter). Although the methodology is presented in this paper using a very simple fault model, it may be easily extended to be used with more elaborate fault models. The proposed technique is a significant contribution to make mixed-signal fault simulation cost-effective as part of the production test preparation.
文摘磁敏位置传感系统广泛应用于汽车、高端装备和先进制造等领域中。文中设计了一种基于霍尔效应的位置传感系统,可以实现被测物旋转角度的检测。该系统通过由线性霍尔芯片和磁铁组成的传感模块获取旋转角度信息,经信号调理电路处理后由12 bit ADC采样转换为数字信号,FPGA读取数据并采用拟合、标准化等算法校准,再利用Cordic算法计算得到被测物旋转角度,最后通过串口屏将测量结果显示。测试结果表明该位置传感系统精度较高,测得的旋转角度误差小于2°。