Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the numbe...Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the number of structural faults which need to be simulated at circuit-level. The purpose of this paper is to propose a novel fault list compression technique by defining a stratified fault list, build with a set of “representative” faults, one per stratum. Criteria to partition the fault list in strata, and to identify representative faults are presented and discussed. A fault representativeness metric is proposed, based on an error probability. The proposed methodology allows different tradeoffs between fault list compression and fault representation accuracy. These tradeoffs may be optimized for each test preparation phase. The fault representativeness vs. fault list compression tradeoff is evaluated with an industrial case study—a DC-DC (switched buck converter). Although the methodology is presented in this paper using a very simple fault model, it may be easily extended to be used with more elaborate fault models. The proposed technique is a significant contribution to make mixed-signal fault simulation cost-effective as part of the production test preparation.展开更多
The authors use numerical model integral products in a third level forecast of synthetically multi-level analog forecast technology.This is one of the strongest points of this study,which also includes the re-ducing m...The authors use numerical model integral products in a third level forecast of synthetically multi-level analog forecast technology.This is one of the strongest points of this study,which also includes the re-ducing mean vacant-forecast rate method,which pos-sesses many advantages with regard to filtering the analog term.Moreover,the similitude degree between samples is assessed using a combination of meteorological elements,which works better than that described using a single element in earlier analog forecast studies.Based on these techniques,the authors apply the model output,air sounding,surface observation and weather map data from 1990 to 2002 to perform an analog experiment of the quasi-stationary front rainstorm.The most important re-sults are as follows:(1) The forecast successful index is 0.36,and was improved after the forecast model was re-vised.(2) The forecast precise rate (0.59) and the lost-forecast rate (0.33) are also better than those of other methods.(3) Based on the model output data,the syn-thetically multilevel analog forecast technology can pro-duce more accurate forecasts of a quasi-stationary front rainstorm.(4) Optimal analog elements reveal that trig-gering mechanisms are located in the lower troposphere while upper level systems are more important in main-taining the phase of the rainstorm.These variables should be first taken into account in operational forecasts of the quasi-stationary front rainstorm.(5) In addition,experi-ments reveal that the position of the key zone is mainly decided by the position of the system causing the heavy rainfall.展开更多
文摘文章针对最新版EMV Level 1标准,对PCD的EMV Level 1 Analog test认证的检测环境及检测项目进行总结,对实际测试中可能遇到的问题进行分析,总结出其技术难点。针对这些难点提出PCD设计中需要重点关注的方面以及设计技巧,进一步给出调试中使用怎样的方法达到系统的最优配置,成功通过EMV Level1 Analog test的检测。
文摘Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the number of structural faults which need to be simulated at circuit-level. The purpose of this paper is to propose a novel fault list compression technique by defining a stratified fault list, build with a set of “representative” faults, one per stratum. Criteria to partition the fault list in strata, and to identify representative faults are presented and discussed. A fault representativeness metric is proposed, based on an error probability. The proposed methodology allows different tradeoffs between fault list compression and fault representation accuracy. These tradeoffs may be optimized for each test preparation phase. The fault representativeness vs. fault list compression tradeoff is evaluated with an industrial case study—a DC-DC (switched buck converter). Although the methodology is presented in this paper using a very simple fault model, it may be easily extended to be used with more elaborate fault models. The proposed technique is a significant contribution to make mixed-signal fault simulation cost-effective as part of the production test preparation.
基金financially supported by the National Basic Research Program of China (Grant No. 2009CB421 401)
文摘The authors use numerical model integral products in a third level forecast of synthetically multi-level analog forecast technology.This is one of the strongest points of this study,which also includes the re-ducing mean vacant-forecast rate method,which pos-sesses many advantages with regard to filtering the analog term.Moreover,the similitude degree between samples is assessed using a combination of meteorological elements,which works better than that described using a single element in earlier analog forecast studies.Based on these techniques,the authors apply the model output,air sounding,surface observation and weather map data from 1990 to 2002 to perform an analog experiment of the quasi-stationary front rainstorm.The most important re-sults are as follows:(1) The forecast successful index is 0.36,and was improved after the forecast model was re-vised.(2) The forecast precise rate (0.59) and the lost-forecast rate (0.33) are also better than those of other methods.(3) Based on the model output data,the syn-thetically multilevel analog forecast technology can pro-duce more accurate forecasts of a quasi-stationary front rainstorm.(4) Optimal analog elements reveal that trig-gering mechanisms are located in the lower troposphere while upper level systems are more important in main-taining the phase of the rainstorm.These variables should be first taken into account in operational forecasts of the quasi-stationary front rainstorm.(5) In addition,experi-ments reveal that the position of the key zone is mainly decided by the position of the system causing the heavy rainfall.