With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to co...With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to convert analog signals to digital signals. As a common type of ADC, 12-bit sequential approximation analog-to-digital converter (SAR ADC) has attracted extensive attention for its performance and application. This paper aims to conduct in-depth research and analysis of 12-bit SAR ADC to meet the growing demands of digital signal processing. This article designs a 12-bit, successive approximation analog-to-digital converter (SAR ADC) with a sampling rate of 5 MS/s. The overall circuit adopts a fully differential structure, with key modules including DAC capacitor array, comparator, and control logic. According to the DAC circuit in this paper, a fully differential capacitor DAC array structure is proposed to reduce the area of layout DAC. The comparator uses a digital dynamic comparator to improve the ADC conversion speed. The chip is designed based on the SMIC180 nm CMOS process. The simulation results show that when the sampling rate is 5 MS/s, the effective bit of SAR ADC is 11.92 bit, the SNR is 74.62 dB, and the SFDR is 89.24 dB.展开更多
This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. A...This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.展开更多
Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAAD...Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.展开更多
The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are inv...The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are investigated in this paper. Gamma ray and 10-MeV proton irradiation are selected for a detailed evaluation and comparison. Based on the measurement results induced by the gamma ray with various dose rates, the devices exhibit enhanced low dose rate sensitivity (ELDRS) under zero and working bias conditions. Meanwhile, it is obvious that the ELDRS is more severe under the working bias condition than under the zero bias condition. The degradation of AD9058 does not display obvious ELDRS during 10-MeV proton irradiation with the selected flux.展开更多
A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital c...A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.展开更多
A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sa...A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.展开更多
A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC ...A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.展开更多
A digital calibration technique for an ultra high-speed folding and interpolating analog-to-digital con- verter in 0.18-μm CMOS technology is presented. The similar digital calibration techniques are taken for high 3...A digital calibration technique for an ultra high-speed folding and interpolating analog-to-digital con- verter in 0.18-μm CMOS technology is presented. The similar digital calibration techniques are taken for high 3-bit flash converter and low 5-bit folding and interpolating converter, which are based on well-designed calibration reference, calibration DAC and comparators. The spice simulation and the measured results show the ADC produces 5.9 ENOB with calibration disabled and 7.2 ENOB with calibration enabled for high-frequency wide-bandwidth analog input.展开更多
This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A fig...This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A figure of merit(FoM) is introduced to evaluate the switching response of the PADC when a dual-output Mach–Zehnder modulator(MZM) serves as the photonic switch to parallelize the sampled pulse train into two channels. After the optimization of the FoM and utilization of the channel-mismatch compensation algorithm,the system bandwidth of PADC is expanded and the signal-to-distortion ratio is enhanced.展开更多
A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CO) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the prec...A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CO) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the precision of CD pipelined ADCs is restricted by the variation in input CM charge, which can compensate for CM charge errors caused by a variation in CM charge input in real time. Based on the feed-forward CM charge control circuit, a 12-bit 250-MS/s CD pipelined ADC is designed and realized using a 1P6M 0.18-μm CMOS process. The ADC achieved a Spurious Free Dynamic Range (SFDR) of 78.1 dB and a Signal-to-Noise-and-Distortion Ratio (SNDR) of 64.6 dB for a 20.1-MHz input; a SFDR of 74.9 dB and SNDR of 62.0 dB were achieved for a 239.9-MHz input at full sampling rate. The variation in signal-to-noise ratio was less than 3 dB over a 0-1.2 V input CM voltage range. The power consumption of the prototype ADC is only 85 mW at 1.8 V supply, and it occupies an active die area of 2.24 mm^2.展开更多
This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked la...This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked laser, and the sampling rate is multiplied via a time-wavelength interleaving scheme. According to the laboratory test, an X-band linear frequency modulation signal is detected and digitized by the PADC system. The channel mismatch effect in wideband signal detection is compensated via an algorithm based on a short-time Fourier transform. Consequently, the signal-to-distortion ratio (SDR) of the wideband signal detection is enhanced to the comparable SDR of the single-tone signal detection.展开更多
An all-optical analog-to-digital converter capable of sampling at 50GS/s is described. The ADC works in the frequency domain. The RF signal is sampled by electro-optically steerable gratings and quantized by a set of ...An all-optical analog-to-digital converter capable of sampling at 50GS/s is described. The ADC works in the frequency domain. The RF signal is sampled by electro-optically steerable gratings and quantized by a set of detectors with scalable apertures.展开更多
A 2-Gsample/s 8-b analog-to-digital converter in 0.35μm BiCMOS process technology is presented. The ADC uses the unique folding and interpolating algorithm and dual-channel timing interleave multiplexing technology t...A 2-Gsample/s 8-b analog-to-digital converter in 0.35μm BiCMOS process technology is presented. The ADC uses the unique folding and interpolating algorithm and dual-channel timing interleave multiplexing technology to achieve a sampling rate of 2 GSPS.Digital calibration technology is used for the offset and gain corrections of the S/H circuit,the offset correction of preamplifier,and the gain and clock phase corrections between channels.As a result of testing,the ADC achieves 7.32 ENOB at an analog input of 484 MHz and 7.1 ENOB at Nyquist input after the chip is self-corrected.展开更多
This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more se...This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more sensitive than the other parts. Power down is the worst-case bias, and this phenomenon is first found in the total ionizing dose effect of analog-to-digital converters. We also find that the AC as well as DC parameters are sensitive to the total ionizing dose at a high dose rate, whereas none of the parameters are sensitive at a low dose rate. The test facilities, results and analysis are presented in detail.展开更多
Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the...Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.展开更多
High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the per...High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.展开更多
The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed ov...The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed over a certain range of 2 km,involving over a hundred devices.The white rabbit,a technology-enhancing Gigabit Ethernet,has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration param-eters with high precision.This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip(SoC).The system consists of four multi-sample delay lines,a bubble-proof encoder,an edge controller for managing data from different channels,and a highly effective calibration module that benefits from the SoC architecture.The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test.The design presented in this study refines the calibration precision of the HIAF timing system.This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis.It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators,such as white rabbits on HIAF.展开更多
Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challeng...Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.展开更多
Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique wa...Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.展开更多
A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the line...A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.展开更多
文摘With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to convert analog signals to digital signals. As a common type of ADC, 12-bit sequential approximation analog-to-digital converter (SAR ADC) has attracted extensive attention for its performance and application. This paper aims to conduct in-depth research and analysis of 12-bit SAR ADC to meet the growing demands of digital signal processing. This article designs a 12-bit, successive approximation analog-to-digital converter (SAR ADC) with a sampling rate of 5 MS/s. The overall circuit adopts a fully differential structure, with key modules including DAC capacitor array, comparator, and control logic. According to the DAC circuit in this paper, a fully differential capacitor DAC array structure is proposed to reduce the area of layout DAC. The comparator uses a digital dynamic comparator to improve the ADC conversion speed. The chip is designed based on the SMIC180 nm CMOS process. The simulation results show that when the sampling rate is 5 MS/s, the effective bit of SAR ADC is 11.92 bit, the SNR is 74.62 dB, and the SFDR is 89.24 dB.
基金supported in part by the National Natural Science Foundation of China under Grant No.61006027the New Century Excellent Talents Program of the Ministry of Education of China under Grant No.NCET-10-0297the Fundamental Research Funds for Central Universities under Grant No.ZYGX2012J003
文摘This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.
文摘Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.
基金supported by the National Natural Science Foundation of China (Grant No. 11205038)the China Postdoctoral Science Foundation (Grant No. 2012M510951)
文摘The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are investigated in this paper. Gamma ray and 10-MeV proton irradiation are selected for a detailed evaluation and comparison. Based on the measurement results induced by the gamma ray with various dose rates, the devices exhibit enhanced low dose rate sensitivity (ELDRS) under zero and working bias conditions. Meanwhile, it is obvious that the ELDRS is more severe under the working bias condition than under the zero bias condition. The degradation of AD9058 does not display obvious ELDRS during 10-MeV proton irradiation with the selected flux.
文摘A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.
基金The National Science Fund for Creative Re-search Groups( Grant No 60521002 )Shanghai Natural Science Foundation (GrantNo 037062022)
文摘A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.
文摘A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.
基金Project supported by the National Natural Science Foundation of China(Nos.60906009,60773025)the Postdoctoral Science Foundation of China(No.20090451423)the National Labs of Analog Integrated Circuits Foundation(No.9140C0901110902)
文摘A digital calibration technique for an ultra high-speed folding and interpolating analog-to-digital con- verter in 0.18-μm CMOS technology is presented. The similar digital calibration techniques are taken for high 3-bit flash converter and low 5-bit folding and interpolating converter, which are based on well-designed calibration reference, calibration DAC and comparators. The spice simulation and the measured results show the ADC produces 5.9 ENOB with calibration disabled and 7.2 ENOB with calibration enabled for high-frequency wide-bandwidth analog input.
基金partially supported by the National Natural Science Foundation of China(Nos.61822508,61571292,and 61535006)
文摘This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A figure of merit(FoM) is introduced to evaluate the switching response of the PADC when a dual-output Mach–Zehnder modulator(MZM) serves as the photonic switch to parallelize the sampled pulse train into two channels. After the optimization of the FoM and utilization of the channel-mismatch compensation algorithm,the system bandwidth of PADC is expanded and the signal-to-distortion ratio is enhanced.
基金supported by National Natural Science Foundation of China under grant No.61704161Key Project of Natural Science of Anhui Provincial Department of Education under grant No.KJ2017A396
文摘A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CO) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the precision of CD pipelined ADCs is restricted by the variation in input CM charge, which can compensate for CM charge errors caused by a variation in CM charge input in real time. Based on the feed-forward CM charge control circuit, a 12-bit 250-MS/s CD pipelined ADC is designed and realized using a 1P6M 0.18-μm CMOS process. The ADC achieved a Spurious Free Dynamic Range (SFDR) of 78.1 dB and a Signal-to-Noise-and-Distortion Ratio (SNDR) of 64.6 dB for a 20.1-MHz input; a SFDR of 74.9 dB and SNDR of 62.0 dB were achieved for a 239.9-MHz input at full sampling rate. The variation in signal-to-noise ratio was less than 3 dB over a 0-1.2 V input CM voltage range. The power consumption of the prototype ADC is only 85 mW at 1.8 V supply, and it occupies an active die area of 2.24 mm^2.
基金partially supported by the National Natural Science Foundation of China(Nos.61571292and 61535006)
文摘This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked laser, and the sampling rate is multiplied via a time-wavelength interleaving scheme. According to the laboratory test, an X-band linear frequency modulation signal is detected and digitized by the PADC system. The channel mismatch effect in wideband signal detection is compensated via an algorithm based on a short-time Fourier transform. Consequently, the signal-to-distortion ratio (SDR) of the wideband signal detection is enhanced to the comparable SDR of the single-tone signal detection.
文摘An all-optical analog-to-digital converter capable of sampling at 50GS/s is described. The ADC works in the frequency domain. The RF signal is sampled by electro-optically steerable gratings and quantized by a set of detectors with scalable apertures.
文摘A 2-Gsample/s 8-b analog-to-digital converter in 0.35μm BiCMOS process technology is presented. The ADC uses the unique folding and interpolating algorithm and dual-channel timing interleave multiplexing technology to achieve a sampling rate of 2 GSPS.Digital calibration technology is used for the offset and gain corrections of the S/H circuit,the offset correction of preamplifier,and the gain and clock phase corrections between channels.As a result of testing,the ADC achieves 7.32 ENOB at an analog input of 484 MHz and 7.1 ENOB at Nyquist input after the chip is self-corrected.
基金supported by the National Natural Science Foundation of China(No.11005152)
文摘This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more sensitive than the other parts. Power down is the worst-case bias, and this phenomenon is first found in the total ionizing dose effect of analog-to-digital converters. We also find that the AC as well as DC parameters are sensitive to the total ionizing dose at a high dose rate, whereas none of the parameters are sensitive at a low dose rate. The test facilities, results and analysis are presented in detail.
基金This work is supported by the Macao Science and Technology Development Fund(FDCT)under Grant 0041/2022/A1by the Research Committee of University of Macao under Grant MYRG2022-00004-IME.
文摘Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.
文摘High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.
基金supported by high-intensity heavy-ion accelerator facility(HIAF)approved by the National Development and Reform Commission of China(2017-000052-73-01-002107)。
文摘The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed over a certain range of 2 km,involving over a hundred devices.The white rabbit,a technology-enhancing Gigabit Ethernet,has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration param-eters with high precision.This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip(SoC).The system consists of four multi-sample delay lines,a bubble-proof encoder,an edge controller for managing data from different channels,and a highly effective calibration module that benefits from the SoC architecture.The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test.The design presented in this study refines the calibration precision of the HIAF timing system.This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis.It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators,such as white rabbits on HIAF.
基金Project supported by the National Undergraduate Training Projects for Innovation and Entrepreneurship (Grant No. 5003182007)the National Natural Science Foundation of China (Grant No. 12074137)+1 种基金the National Key Research and Development Project of China (Grant No. 2021YFB2801903)the Natural Science Foundation from the Science,Technology,and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20220530161010023)。
文摘Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.
文摘Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20242,52271260,52001054)Natural Science Foundation of Liaoning Province(Grant No.2021-BS-060)Fundamental Research Funds for the Central Universities(Grant No.DUT23RC(3)017)。
文摘A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.