Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic ...Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.展开更多
It is of great significance to make comparative analyses of seismic fortification criteria at home and abroad for improving the anti-seismic capability of electrical equipment and revising the relevant national standa...It is of great significance to make comparative analyses of seismic fortification criteria at home and abroad for improving the anti-seismic capability of electrical equipment and revising the relevant national standards.A brief overview of American,Japanese,IEC standards and Chinese seismic design codes for electrical equipment is presented.Differences between these seismic fortification standards of electrical equipment are compared and analyzed in respect of the goal and level of seismic fortification and the seismic design spectrum.The advantages and disadvantages of Chinese standards are pointed out.Through learning from foreign experience on the determination of seismic fortification standards,recommendations are made for the improvement and revision of Chinese seismic fortification standards for electrical equipment.展开更多
The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were prop...The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.展开更多
Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seism...Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.展开更多
The different characteristics of cardiac electric field(CEF)radiation in humans and other animals are presented in this paper.Physical modeling and mathematical analysis are developed to comprehensively unveil the pro...The different characteristics of cardiac electric field(CEF)radiation in humans and other animals are presented in this paper.Physical modeling and mathematical analysis are developed to comprehensively unveil the properties of CEF,based on typical heartbeat waveforms.Our numerical simulation results demonstrate that the frequency bandwidths and the cycle durations of CEF are different for healthy humans versus humans on the verge of death and for humans versus other animals.The results indicate that the present study may extensively contribute towards recognizing human beings or other animal targets quickly and accurately with CEF in dangerous situations or in other applications.展开更多
It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontro...It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontrolled dumps. In the practice, even the regulatory instruments are not consolidated and the adequate management of the use of WEEE management, so the aim of this study is an analysis of life cycle of printed circuit boards (TCI) to identify the management alternatives that represent the least impact to the environment. This assessment was carried out using software SIMAPRO to determine the environmental impact of each scenario, through the comparison of impacts and the proposed improvements to reduce it, following phases of this methodology by applying standards, ISO 14040/ISO 14044 [2], using data from the INE official reports since 2006 until 2010 which concentrate the information of the WEEE problem in Mexico. These data were pooled to carry out inventories according to the availability in the information, identifying the environmental impacts generated by processing. The conclusions of the LCA will serve to identify the stage with greater environmental impact, and thus propose ideas for improvement in order to minimize this impact.展开更多
针对换流站多种电气设备检测时背景复杂干扰性强而又需要快速准确检测出故障的实际情况,提出基于改进YOLOv5(You Only Look Once)的检测方法。首先,为提高算法的准确性和收敛速度,通过K-means聚类算法对YOLOv5模型中的锚框预设进行改进...针对换流站多种电气设备检测时背景复杂干扰性强而又需要快速准确检测出故障的实际情况,提出基于改进YOLOv5(You Only Look Once)的检测方法。首先,为提高算法的准确性和收敛速度,通过K-means聚类算法对YOLOv5模型中的锚框预设进行改进,在数据集预处理阶段得到更适用于换流站电气设备的锚框,使其更加契合换流站电力设备数据集;然后,为提高算法检测过程的识别速度,在特征提取网络添加注意力机制模块,筛选出重要的特征信息。将改进后的算法网络识别效果与YOLOv5中的原始算法网络检测结果进行对比分析。结果表明,检测平均识别精度均值由71.16%提高至92.51%,检测速度由21帧/s提升至31帧/s;同时与R-CNN(Regions with convolutional neural networks)等算法相比,检测精度与速度都有较大提升。添加可解释性分析,将识别结果通过热力图的形式显示,可以更好地应对算法的潜在风险。展开更多
针对现阶段用电设备状态监测技术存在的处理速度较慢、准确率较低等问题,文中基于多突变点检测和模板匹配策略提出了一种用电设备在线状态监测方法。该方法在缓冲区模型和滑动窗口模型的基础上,利用多路搜索树突变点检测(Ternary Search...针对现阶段用电设备状态监测技术存在的处理速度较慢、准确率较低等问题,文中基于多突变点检测和模板匹配策略提出了一种用电设备在线状态监测方法。该方法在缓冲区模型和滑动窗口模型的基础上,利用多路搜索树突变点检测(Ternary Search Tree and Kolmogorov-Smirnov,TSTKS)算法形成窗口维度和缓冲区维度的特征向量,通过两种维度的模板匹配实现用电设备的运行状态匹配和状态切换时刻定位。基于家用电冰箱的仿真实验结果表明,所提方法具有检测速度快、准确率高等优点,可为用电设备状态监测领域提供参考。展开更多
基金Scientific Research Fund of IEM,CEA under Grant Nos.2016B09,2014B12China Natural Science Foundation under Grant Nos.51478442,51408565
文摘Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.
基金funded by the special project of Spark Program of Earthquake Sciences (Serial number:XH12063)
文摘It is of great significance to make comparative analyses of seismic fortification criteria at home and abroad for improving the anti-seismic capability of electrical equipment and revising the relevant national standards.A brief overview of American,Japanese,IEC standards and Chinese seismic design codes for electrical equipment is presented.Differences between these seismic fortification standards of electrical equipment are compared and analyzed in respect of the goal and level of seismic fortification and the seismic design spectrum.The advantages and disadvantages of Chinese standards are pointed out.Through learning from foreign experience on the determination of seismic fortification standards,recommendations are made for the improvement and revision of Chinese seismic fortification standards for electrical equipment.
文摘The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.
基金founded by the Earthquake Science and Technology Spark Plan of China(XH12063)
文摘Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.
基金Supported by the National Natural Science Foundation of China(51447002)。
文摘The different characteristics of cardiac electric field(CEF)radiation in humans and other animals are presented in this paper.Physical modeling and mathematical analysis are developed to comprehensively unveil the properties of CEF,based on typical heartbeat waveforms.Our numerical simulation results demonstrate that the frequency bandwidths and the cycle durations of CEF are different for healthy humans versus humans on the verge of death and for humans versus other animals.The results indicate that the present study may extensively contribute towards recognizing human beings or other animal targets quickly and accurately with CEF in dangerous situations or in other applications.
文摘It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontrolled dumps. In the practice, even the regulatory instruments are not consolidated and the adequate management of the use of WEEE management, so the aim of this study is an analysis of life cycle of printed circuit boards (TCI) to identify the management alternatives that represent the least impact to the environment. This assessment was carried out using software SIMAPRO to determine the environmental impact of each scenario, through the comparison of impacts and the proposed improvements to reduce it, following phases of this methodology by applying standards, ISO 14040/ISO 14044 [2], using data from the INE official reports since 2006 until 2010 which concentrate the information of the WEEE problem in Mexico. These data were pooled to carry out inventories according to the availability in the information, identifying the environmental impacts generated by processing. The conclusions of the LCA will serve to identify the stage with greater environmental impact, and thus propose ideas for improvement in order to minimize this impact.
文摘针对换流站多种电气设备检测时背景复杂干扰性强而又需要快速准确检测出故障的实际情况,提出基于改进YOLOv5(You Only Look Once)的检测方法。首先,为提高算法的准确性和收敛速度,通过K-means聚类算法对YOLOv5模型中的锚框预设进行改进,在数据集预处理阶段得到更适用于换流站电气设备的锚框,使其更加契合换流站电力设备数据集;然后,为提高算法检测过程的识别速度,在特征提取网络添加注意力机制模块,筛选出重要的特征信息。将改进后的算法网络识别效果与YOLOv5中的原始算法网络检测结果进行对比分析。结果表明,检测平均识别精度均值由71.16%提高至92.51%,检测速度由21帧/s提升至31帧/s;同时与R-CNN(Regions with convolutional neural networks)等算法相比,检测精度与速度都有较大提升。添加可解释性分析,将识别结果通过热力图的形式显示,可以更好地应对算法的潜在风险。
文摘针对现阶段用电设备状态监测技术存在的处理速度较慢、准确率较低等问题,文中基于多突变点检测和模板匹配策略提出了一种用电设备在线状态监测方法。该方法在缓冲区模型和滑动窗口模型的基础上,利用多路搜索树突变点检测(Ternary Search Tree and Kolmogorov-Smirnov,TSTKS)算法形成窗口维度和缓冲区维度的特征向量,通过两种维度的模板匹配实现用电设备的运行状态匹配和状态切换时刻定位。基于家用电冰箱的仿真实验结果表明,所提方法具有检测速度快、准确率高等优点,可为用电设备状态监测领域提供参考。