We investigate the question whether certain parabolic systems in the sense of Petrovskii fulfill the resolvent estimate required for the generation of an analytic semigroup and apply the result to a problem concerning...We investigate the question whether certain parabolic systems in the sense of Petrovskii fulfill the resolvent estimate required for the generation of an analytic semigroup and apply the result to a problem concerning the diffusion of gases.展开更多
We discuss the existence results of the parabolic evolution equation d(x(t)+g(t,x(t)))/dt+A(t)x(t)=f(t,x(t)) in Banach spaces, where A(t) generates an evolution system and functions f,g are continuous. We get the theo...We discuss the existence results of the parabolic evolution equation d(x(t)+g(t,x(t)))/dt+A(t)x(t)=f(t,x(t)) in Banach spaces, where A(t) generates an evolution system and functions f,g are continuous. We get the theorem of existence of a mild solution, the theorem of existence and uniqueness of a mild solution and the theorem of existence and uniqueness of an S-classical (semi-classical) solution. We extend the cases when g(t)=0 or A(t)=A.展开更多
In this paper, we investigate a class of abstract neutral fractional delayed evolution equation in the fractional power space. With the aid of the analytic semigroup theories and some fixed point theorems, we establis...In this paper, we investigate a class of abstract neutral fractional delayed evolution equation in the fractional power space. With the aid of the analytic semigroup theories and some fixed point theorems, we establish the existence and uniqueness of the S-asymptotically periodic α-mild solutions. The linear part generates a compact and exponentially stable analytic semigroup and the nonlinear parts satisfy some conditions with respect to the fractional power norm of the linear part, which greatly improve and generalize the relevant results of existing literatures.展开更多
In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of...In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of the front equation may be more involved. In this paper, a generalized K-S equation, a nonlinear wave equation with a strong damping operator, is considered. As a consequence, the associated semigroup turns out to be analytic. Asymptotic convergence to K-S is shown, while numerical results illustrate the dynamics.展开更多
In this paper,we use the analytic semigroup theory of linear operators and fixed point method to prove the existence of mild solutions to a semilinear fractional order functional differential equations in a Banach space.
A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis th...A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis theory,a sufficient condition of the existence for p-mean almost periodic solution is obtained,which are supported by two examples.展开更多
This paper deals with the approximate controllability of semilinear neutral functional differential systems with state-dependent delay. The fractional power theory and α-norm are used to discuss the problem so that t...This paper deals with the approximate controllability of semilinear neutral functional differential systems with state-dependent delay. The fractional power theory and α-norm are used to discuss the problem so that the obtained results can apply to the systems involving derivatives of spatial variables. By methods of functional analysis and semigroup theory, sufficient conditions of approximate controllability are formulated and proved. Finally, an example is provided to illustrate the applications of the obtained results.展开更多
This paper is concerned first with the behaviour of differences T(t) - T(s) near the origin, where (T(t)) is a semigroup of operators on a Banach space, defined either on the positive real line or a sector in ...This paper is concerned first with the behaviour of differences T(t) - T(s) near the origin, where (T(t)) is a semigroup of operators on a Banach space, defined either on the positive real line or a sector in the right half-plane (in which case it is assumed analytic). For the non-quasinilpotent case extensions of results in the published literature are provided, with best possible constants; in the case of quasinilpotent semigroups on the half-plane, it is shown that, in general, differences such as T(t) -T(2t) have norm approaching 2 near the origin. The techniques given enable one to derive estimates of other functions of the generator of the semigroup; in particular, conditions are given on the derivatives near the origin to guarantee that the semigroup generates a unital algebra and has bounded generator.展开更多
In this paper, the authors consider the Gevrey class regularity of a semigroup associated with a nonlinear Korteweg-de Vries (KdV for short) equation. By estimating the resolvent of the corresponding linear operator...In this paper, the authors consider the Gevrey class regularity of a semigroup associated with a nonlinear Korteweg-de Vries (KdV for short) equation. By estimating the resolvent of the corresponding linear operator, the authors conclude that the semigroup 3 generated by the linear operator is not analytic but of Gevrey class δ ε (5, ) for t 〉 0,展开更多
文摘We investigate the question whether certain parabolic systems in the sense of Petrovskii fulfill the resolvent estimate required for the generation of an analytic semigroup and apply the result to a problem concerning the diffusion of gases.
文摘We discuss the existence results of the parabolic evolution equation d(x(t)+g(t,x(t)))/dt+A(t)x(t)=f(t,x(t)) in Banach spaces, where A(t) generates an evolution system and functions f,g are continuous. We get the theorem of existence of a mild solution, the theorem of existence and uniqueness of a mild solution and the theorem of existence and uniqueness of an S-classical (semi-classical) solution. We extend the cases when g(t)=0 or A(t)=A.
基金Supported by NNSF of China(11871302)China Postdoctoral Science Foundation(2020M682140)+1 种基金NSF of Shanxi,China (201901D211399)Graduate Research Support project of Northwest Normal University(2021KYZZ01030)
文摘In this paper, we investigate a class of abstract neutral fractional delayed evolution equation in the fractional power space. With the aid of the analytic semigroup theories and some fixed point theorems, we establish the existence and uniqueness of the S-asymptotically periodic α-mild solutions. The linear part generates a compact and exponentially stable analytic semigroup and the nonlinear parts satisfy some conditions with respect to the fractional power norm of the linear part, which greatly improve and generalize the relevant results of existing literatures.
基金supported by the National Natural Science Foundation of China (No. 11071203)the 973 High Performance Scientific Computation Research Program (No. 2005CB321703)+1 种基金the US-Israel Binational Science Foundation (No. 2006-151)the Israel Science Foundation (No. 32/09)
文摘In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of the front equation may be more involved. In this paper, a generalized K-S equation, a nonlinear wave equation with a strong damping operator, is considered. As a consequence, the associated semigroup turns out to be analytic. Asymptotic convergence to K-S is shown, while numerical results illustrate the dynamics.
基金supported by the National Natural Science Foundation of China (No.11071001)the Natural Science Foundation of Huangshan University (No.2010xkj014)the Foundation of Education Department of Anhui Province (KJ2011B167)
文摘In this paper,we use the analytic semigroup theory of linear operators and fixed point method to prove the existence of mild solutions to a semilinear fractional order functional differential equations in a Banach space.
基金by the National Natural Science Foundation of China(Nos.11871162,11661050,11561059).
文摘A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis theory,a sufficient condition of the existence for p-mean almost periodic solution is obtained,which are supported by two examples.
基金supported by the National Natural Science Foundation of China(Nos.11171110,11371087)the Science and Technology Commission of Shanghai Municipality(No.13dz2260400)the Shanghai Leading Academic Discipline Project(No.B407)
文摘This paper deals with the approximate controllability of semilinear neutral functional differential systems with state-dependent delay. The fractional power theory and α-norm are used to discuss the problem so that the obtained results can apply to the systems involving derivatives of spatial variables. By methods of functional analysis and semigroup theory, sufficient conditions of approximate controllability are formulated and proved. Finally, an example is provided to illustrate the applications of the obtained results.
基金Supported by EPSRC (EP/F020341/1)partially supported by the research project AHPIfunded by ANR
文摘This paper is concerned first with the behaviour of differences T(t) - T(s) near the origin, where (T(t)) is a semigroup of operators on a Banach space, defined either on the positive real line or a sector in the right half-plane (in which case it is assumed analytic). For the non-quasinilpotent case extensions of results in the published literature are provided, with best possible constants; in the case of quasinilpotent semigroups on the half-plane, it is shown that, in general, differences such as T(t) -T(2t) have norm approaching 2 near the origin. The techniques given enable one to derive estimates of other functions of the generator of the semigroup; in particular, conditions are given on the derivatives near the origin to guarantee that the semigroup generates a unital algebra and has bounded generator.
基金supported by the National Natural Science Foundation of China(Nos.11401021,11471044,11771336,11571257)the LIASFMA,the ANR project Finite4SoS(No.ANR 15-CE23-0007)the Doctoral Program of Higher Education of China(Nos.20130006120011,20130072120008)
文摘In this paper, the authors consider the Gevrey class regularity of a semigroup associated with a nonlinear Korteweg-de Vries (KdV for short) equation. By estimating the resolvent of the corresponding linear operator, the authors conclude that the semigroup 3 generated by the linear operator is not analytic but of Gevrey class δ ε (5, ) for t 〉 0,