The solar bubble dryer (SBD) is a convenient and better option to traditional open sun drying commonly practiced by smallholder farmers in Ghana and other developing countries. However, to operate the SBD, one is face...The solar bubble dryer (SBD) is a convenient and better option to traditional open sun drying commonly practiced by smallholder farmers in Ghana and other developing countries. However, to operate the SBD, one is faced with the challenge of frequent mixing of grains using a rake to enhance uniform drying and prevent over-heating of the top-layer exposed to the sun. Additionally, condensation in the SBD can compromise the quality of grains during drying under humid conditions. In the present study, the Analytical Hierarchy Process (AHP) was used to select an appropriate drying platform, tarpaulin, or elevated drying rack for maize drying in the SBD. Using the AHP, the elevated drying rack was chosen as a suitable platform for drying maize in the SBD. The SBD with the elevated drying racks was used to dry 270 kg of maize from a moisture content of 18.2% to 12.6% (w.w.b) within 6 hours compared to 11 hours for the same quantity of grains dried on the tarpaulin of the SBD to reach an MC of 12.5% (w.w.b). An average drying rate and moisture extraction rate of 0.93%/h and 2.88 kg/h were achieved with the elevated drying rack system compared to 0.52%/h and 1.60 kg/h when drying on the tarpaulin of the SBD. An average temperature of 44.6<span style="white-space:nowrap;">°</span>C recorded in the SBD was 9<span style="white-space:nowrap;">°</span>C more compared to the ambient temperature. The thermal efficiency of the SBD collector was determined as 36.2%. Drying grains with the elevated racks showed advantages of reduced drying time, improved airflow through the drying bed, and prevention of condensation, which occurs when drying on the tarpaulin of the SBD.展开更多
文摘The solar bubble dryer (SBD) is a convenient and better option to traditional open sun drying commonly practiced by smallholder farmers in Ghana and other developing countries. However, to operate the SBD, one is faced with the challenge of frequent mixing of grains using a rake to enhance uniform drying and prevent over-heating of the top-layer exposed to the sun. Additionally, condensation in the SBD can compromise the quality of grains during drying under humid conditions. In the present study, the Analytical Hierarchy Process (AHP) was used to select an appropriate drying platform, tarpaulin, or elevated drying rack for maize drying in the SBD. Using the AHP, the elevated drying rack was chosen as a suitable platform for drying maize in the SBD. The SBD with the elevated drying racks was used to dry 270 kg of maize from a moisture content of 18.2% to 12.6% (w.w.b) within 6 hours compared to 11 hours for the same quantity of grains dried on the tarpaulin of the SBD to reach an MC of 12.5% (w.w.b). An average drying rate and moisture extraction rate of 0.93%/h and 2.88 kg/h were achieved with the elevated drying rack system compared to 0.52%/h and 1.60 kg/h when drying on the tarpaulin of the SBD. An average temperature of 44.6<span style="white-space:nowrap;">°</span>C recorded in the SBD was 9<span style="white-space:nowrap;">°</span>C more compared to the ambient temperature. The thermal efficiency of the SBD collector was determined as 36.2%. Drying grains with the elevated racks showed advantages of reduced drying time, improved airflow through the drying bed, and prevention of condensation, which occurs when drying on the tarpaulin of the SBD.