A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. T...A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. To construct an optimized quality evaluation system for postgraduate dissertation (QESPD), we summarized the influencing factors and invited 10 experienced specialists to rate and prioritize them based on fuzzy analytic hierarchy process. Four primary indicators (innovation, integrity, scientificity and normativity) and 16 sub-indicators were selected to form the evaluation system. The order of primary indicators by weight, was innovation (0.4269), scientificity (0.2807), integrity (0.1728) and normativity (0.1196). The top five sub-dimensions were theoretical originality, scientific value, data reliability, design rationality and evidence credibility. To demonstrate the effectiveness of the proposed system, a case study was performed. In the case study, it was demonstrated that the established two-index-hierarchy QESPD in this study was a more scientific and reasonable evaluation system worthy of promotion and application.展开更多
Scallop culture is an important way of bottom-seeding marine ranching,which is of great significance to improve the current situation of fishery resources.However,there are some problems in site-selection evaluation o...Scallop culture is an important way of bottom-seeding marine ranching,which is of great significance to improve the current situation of fishery resources.However,there are some problems in site-selection evaluation of marine ranching,such as imperfect criteria system,complex structure,untargeted criteria quantification,etc.In addition,no site-selection evaluation method of bottom-seeding culture areas for scallops is available.Therefore,we established a hierarchy structure model according to the analytic hierarchy process(AHP)theory,in which social,physical,chemical,and biological environments are used as main criteria,and marine functional zonation,water depth,current,water temperature,salinity,substrate type,water quality,sediment quality,red tide,phytoplankton,and zooplankton are used as sub-criteria,on which a multi-parameter evaluation system is set up.Meanwhile,the dualism method,assignment method,and membership function method were used to quantify sub-criteria,and a quantitative evaluation for the entire criteria was added,including the evaluation and analysis of two types of unsuitable environmental situations.By overall consideration in scallop yield,quality,and marine ranching construction objectives,the weight of the main criteria could be determined.Five grades in the suitability corresponding to the evaluation result were divided,and the Python language was used to create an evaluation system for efficient calculation and intuitive presentation of the evaluation outcome.Eight marine cases were simulated based on existing survey data,and the results prove that the method is feasible for evaluating and analyzing the site selection of bottom-seeding culture areas for scallops under various environmental situations.The proposed evaluation method can be promoted for the site selection of bottom-seeding marine ranching.This study provided theoretical and methodological references for the site selection evaluation of other types of marine ranching.展开更多
Casing corrosion during CO2 injection or storage results in significant economic loss and increased production risks.Therefore,in this paper,a corroded casing risk assessment model based on analytic hierarchy process ...Casing corrosion during CO2 injection or storage results in significant economic loss and increased production risks.Therefore,in this paper,a corroded casing risk assessment model based on analytic hierarchy process and fuzzy comprehensive evaluation is established to identify potential risks in time.First,the corrosion rate and residual strength characteristics are analyzed through corrosion tests and numerical simulations,respectively,to determine the risk factors that may lead to an accident.Then,an index system for corroded casing risk evaluation is established based on six important factors:temperature,CO2 partial pressure,flow velocity,corrosion radius,corrosion depth and wellhead pressure.Subsequently,the index weights are calculated via the analytic hierarchy process.Finally,the risk level of corroded casing is obtained via the fuzzy comprehensive evaluation.The corroded casing risk assessment model has been verified by a case well,which shows that the model is valuable and feasible.It provides an effective decision-making method for the risk evaluation of corroded casing in CO2 injection well,which is conductive to improve the wellbore operation efficiency.展开更多
Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making i...Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.展开更多
Mekong River is one of the major international freshwater sources in the world. The Lower Mekong Basin (LMB) comprised of four downstream countries, including Thailand, Lao PDR, Cambodia, and Vietnam. The utilization ...Mekong River is one of the major international freshwater sources in the world. The Lower Mekong Basin (LMB) comprised of four downstream countries, including Thailand, Lao PDR, Cambodia, and Vietnam. The utilization of the basin’s water brings not only substantial benefits to the region ranging from hydropower to navigation, but also negative impacts caused by the unbalanced water using. The essential role of Mekong River requires all member nations to cooperate effectively for the sustainable development of the region. One of the most popular methods in the field of water resource management is a trustable tool called the Analytical Hierarchy Process (AHP). AHP is much appropriate for water resource policymaking. The literature, however, points out that there is no study to both structure the water using hierarchy and employ quantitative (objective) criteria to the AHP model in LMB case. With regard to water resource management, there are no previous studies applying AHP models to evaluating sustainable development of transboundary water resource in LMB case. This paper explores the evolution of water cooperation among Mekong countries and subsequently evaluates the water development scenarios in the LMB based on the water cooperation preferences of four LMB countries This study proposes a novel approach to analyzing, assessing water resource development scenarios characterized by sustainability indicators and to assisting in developing a suitable water policy in LMB according to the best cooperation scenario.展开更多
Improving the stability of the homogenization process to achieve the homogeneity of tobacco products is one of important targets for the redrying industry.According to the specification for threshing and redrying proc...Improving the stability of the homogenization process to achieve the homogeneity of tobacco products is one of important targets for the redrying industry.According to the specification for threshing and redrying process,a total of 14 indicators in three categories that affect the quality of the threshing and redrying process were selected.Using analytic hierarchy process,combined with expert experiences,a judgment matrix was constructed to conduct consistency test.The weights of indices in production were obtained.This will help in evaluating the actual production quality,finding the weak links of process and adjusting the parameters of the corresponding links in a targeted manner,thereby improving the quality of production process.展开更多
There exists a growing demand for potable water resources to fill the abysmally insufficient water needs for domestic and industrial especially in the Basement Complex terrains of Nigeria. This situation is attributab...There exists a growing demand for potable water resources to fill the abysmally insufficient water needs for domestic and industrial especially in the Basement Complex terrains of Nigeria. This situation is attributable to its complex hydrogeologic character. The present challenge has worsened due to the non-incorporation of integrated methods in groundwater exploration campaigns. To effectively combat the challenge of unacceptable failure rates in drilled water well development, there is a need for innovative scientific principles and quantitative assessment of groundwater resources to enhance sustainable and proper utilisation of these resources. Hence, it is the objective of this research to exploit the potential application of remote sensing, Geographic Information System (GIS), and Multi-Criteria Decision Analysis (MCDA) techniques and freely open datasets in mapping groundwater potential zones. Seven thematic maps have been produced based on factors that are deemed to influence and deemed to have significant control on the occurrence and movement of groundwater. These factors are geology, lineament density, slope, drainage density, rainfall, land-use/land cover, and soil class. Analytic Hierarchy Process (AHP) was used to assign normalised weights to the thematic maps based on the various relative contributions to groundwater occurrence and movement. These thematic maps were then processed in a GIS environment using the Weighted Overlay tool which implements the MCDA. The resulting Groundwater Potential Zones (GPZ) of the area gave rise to Five classes viz: Very good, Good, Moderate, Poor and Very Poor </span><span style="font-family:Verdana;">representing 19%, 8%, 14%, 47% and 13% respectively. It is recommended that the GPZ map should be used as a reconnaissance tool for selecting prospective sites for detailed groundwater resource exploitation.展开更多
[ Objective] The research aimed to evaluate ecological vulnerability of the vegetation in the Subei Lake watershed based on analytic hierarchy process (AHP). [ Method] From actual situation of the vegetation ecology...[ Objective] The research aimed to evaluate ecological vulnerability of the vegetation in the Subei Lake watershed based on analytic hierarchy process (AHP). [ Method] From actual situation of the vegetation ecology in the Subei Lake watershed, by the established evaluation index system of vegetation ecology, based on AHP, indicator weight at each layer was determined. Comprehensive index method was used to calculate ecological fragility degree of the vegetation in each evaluation unit to evaluate ecological vulnerability of the vegetation. [ Result] Ecological vulnera- bility of the vegetation was divided into four levels, such as extremely fragile, highly fragile, moderately fragile and lowly fragile in the Subei Lake watershed. The extremely fragile area, where buried depth of the groundwater level was generally less than 1.0 meter, distributed in beach zones near the Subei Lake, and its relationship between vegetation and groundwater was close. The lowly fragile areas scattered in the ridge zone around the Subei Lake watershed, where buried depth of the groundwater level was 10.0 -40.0 meters, and their relationship between vegetation growth and groundwater depth was not obvious. Buried depth of groundwater had the most sensitive influence on vegetation ecology, and it was the key factor between utilization of groundwater resources and eco-environment protection in the study area. E Conclusion] The researches provided scientific evidence for regional eco-environment protection, rational development and utilization of water resources, and coordinated development of economy and society.展开更多
As a difficult problem, sidewall instability has been beset drilling workers all the time. Not only does it cause huge economic losses, but also it determines the success or failure of drilling engineering. Due to com...As a difficult problem, sidewall instability has been beset drilling workers all the time. Not only does it cause huge economic losses, but also it determines the success or failure of drilling engineering. Due to complex relationship between various factors which influence sidewall stability, it hasn’t been found a widely applied method to predicate sidewall stability so far. Therefore, in order to formulate corresponding measures to ensure successful drilling, searching for a kind of better method to forecast sidewall stability before drilling becomes an imperative and significant topic for drilling engineering. On the basis of traditional sidewall stability analytical method, we have put forward the Fuzzy Comprehensive Evaluation Method to forecast sidewall stability regulation using physico-chemical performance parameters of the clay mineral. This method has been improved by introducing the Analytic Hierarchy Process (AHP) and the Maximum Subjection Principle in the application process. After introducing Analytic Hierarchy Process to identify weight, and Maximum Subjection Principle to obtain evaluation results, it has reduced the influence of human factors and enhanced the accuracy of the fuzzy evaluation results. The application in Hailaer Area indicates that this method can predict sidewall stability of gas-oil well with high credibility and strong practicability.展开更多
This research,from the theories of management science,supply chain management and logistics engineering,on the basis of extensive investigations,and using the method of analytic hierarchy process(AHP),evaluates the pr...This research,from the theories of management science,supply chain management and logistics engineering,on the basis of extensive investigations,and using the method of analytic hierarchy process(AHP),evaluates the present situation of logistics service of agricultural products.Taking Nanping City(Nanping)as a case,it explores the obstacles existing in current logistics service system and the factors limiting the development of agricultural product logistics service.Combining with the theory of modern logistics system,it reveals the problems in the logistics system and the causes,and then constructs the strategy of optimization for agricultural product logistics service in Nanping.The conclusion of the study can be references for the government to make scientific strategies for the development of the agricultural product logistics service and help logistics enterprises improve their service level.展开更多
Generally, mine roads are located in the mountain areas, as its complex topography, mostly along the river near the cliffs, steep bend anxious, the mine road design has to adopt lower technical standards relatively an...Generally, mine roads are located in the mountain areas, as its complex topography, mostly along the river near the cliffs, steep bend anxious, the mine road design has to adopt lower technical standards relatively and usually is lack of traffic safety facilities. Especially, there are mainly medium-sized vehicles on mine road, under the heavy traffic vehicles affect repeatedly, high frequency of traffic accidents more easily happen in mine road area and cause serious effects on life or property. Combining with the particularity of mine road safety environment, this paper studies the basic theory of safety evaluation, analyses the factors of traffic safety design and special mine terrain conditions, and then establishes mine road safety index system and evaluation model based on the principles such as systematicness, independent indexes, qualitative and quantitative analysis, feasibility, scientificity and reliability. At last, the paper successfully evaluates the safety of road in Huang Mailing phosphate rock area with fuzzy AHP method based on engineering project.展开更多
Today's banking institutions spread their product and service line on a daily basis. This effort to increase competitiveness is also creating an overstocked supply for existing and new clients. Not every product is m...Today's banking institutions spread their product and service line on a daily basis. This effort to increase competitiveness is also creating an overstocked supply for existing and new clients. Not every product is meant for every client and aggressive sales strategies tend to repel clients which can cause serious problems in long-term client-bank relations. This paper will analyze savings and investments products along with their adaptation and modulation regarding client needs. Accordingly, banks will be able to offer particular products to clients with specific needs and wishes. The analytic hierarchy process, or simply AHP method, represents a process which will be able to transform client's demands and affinities into a customized offer. It is an easy-to-implement method used in any step of the decision-making process; the process must have multiple alternatives and each of them carries specific characteristics. The decision maker ranks all the characteristics and simultaneously all the alternatives, according to his affinities forming a final decision. This paper will explain how banks will be able to adapt to client needs and wishes in the future using the AHP method.展开更多
Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltratio...Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltration criteria: precipitation, land slope, soil erodibility (K-factor), vegetation cover (NDVI), land use, drainage density, saturated hydraulic conductivity, and hydrologic soil group. Respective criteria weights were derived using a Fuzzy Analytic Hierarchy Process (FAHP) supported by expert opinion. A survey of 10 experts, representing New Mexico Institute of Mining and Technology (NMT), the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the United States Geologic Survey (USGS), provided model input data for an integrated pair-wise comparison matrix for soil erosion and for infiltration. Individual criteria weights were determined by decomposing the respective fuzzy synthetic extent matrix using the centroid method. GIS layers were then combined based on criteria weights to produce maps of soil erosion potential and infiltration potential. A composite watershed vulnerability map was generated by equal weighting of each input map. Model results were categorized into five vulnerability categories: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The resulting FAHP/GIS model was used to generate a watershed vulnerability map of discrete areas in Bernalillo County, which may be vulnerable to stormwater run-off events and soil erosion. Such high volume run-off events can cause erosion damage to property and infrastructure. Alternatively, in areas near urban development, stormwater run-off may contribute non-point-source pollutant contamination of New Mexico’s surface water resources. The most problematic areas in Bernalillo County are present in the Eastern and Northwestern portions. However, less than 1% of the total area lies within the lowest and highest vulnerability categories with the majority centered around moderate vulnerability. The results of the model were compared with a previously published crisp AHP method. Both methods showed similar regional vulnerability trends. This MCDS/GIS approach is intended to provide support to local governments and decision makers in selection of suitable structural or nonstructural stormwater control measures.展开更多
This paper concerns with proposing a fuzzy logic based expert system to breakthrough the problem of alternatives evaluation in Analytic Hierarchy Process (AHP). AHP as a multi criteria decision aid helped decision mak...This paper concerns with proposing a fuzzy logic based expert system to breakthrough the problem of alternatives evaluation in Analytic Hierarchy Process (AHP). AHP as a multi criteria decision aid helped decision makers for ana-lyzing and prioritizing the alternatives in a hierarchical structure. During times AHP encountered some problems. Hence, fuzzy analytic hierarchy process (FAHP) and some other extensions of AHP have been configured to solve those problems.展开更多
Indicators are the basis for judging the working performance of exhaust hood and capture performance are usually used as the only indicator.An evaluation index system including three factors of cooking oil fumes(COF)i...Indicators are the basis for judging the working performance of exhaust hood and capture performance are usually used as the only indicator.An evaluation index system including three factors of cooking oil fumes(COF)instantaneous capture,health risk impact and thermal comfort was proposed to assess the comprehensive performance of exhaust hood in the present study.The primary capture efficiency(PCE)of formaldehyde,the PCE of particulate matter with the diameter less than or equal to 2.5μm(PM_(2.5)),the incremental lifetime cancer risk(ILCR)of formaldehyde,the ILCR of PM_(2.5)and the predicted mean vote(PMV),which can all be quantified with the aid of computational fluid dynamics(CFD),were selected as the indicators.And the analytic hierarchy process(AHP)method was introduced to perform the comprehensive performance evaluation of exhaust hood.The performance of two exhaust hood structures(grille and orifice type)with three exhaust rates(3000,4000,and 5000 m^(3)/h)in two cooking zones of a university canteen kitchen were evaluated.The result showed that the reduction of ILCR of COF exposure is the most important to the performance of exhaust hood.The comprehensive performance of orifice exhaust hood with exhaust rate of 4000 and 5000 m^(3)/h are optimal;the orifice exhaust hood with exhaust of 3000 m^(3)/h and grille exhaust hood with exhaust rate of 5000 m^(3)/h are moderate;the grille exhaust hood with exhaust rate of 3000 and 4000 m^(3)/h are low.Decision-making priorities based on comprehensive and individual performance are not exactly the same in the two cooking zones.It is necessary to use the index system to evaluate the comprehensive performance of exhaust hood that considers the impact on human health and thermal comfort.展开更多
Since there are many interacting influence factors of the comfortable degree of lactating sows,a method that combines improved analytic hierarchy process(IAHP)and fuzzy comprehensive evaluation(FCE)was introduced to c...Since there are many interacting influence factors of the comfortable degree of lactating sows,a method that combines improved analytic hierarchy process(IAHP)and fuzzy comprehensive evaluation(FCE)was introduced to conduct a quantitative evaluation of the comfortable degree.Besides,an evaluation index system was established,and the weights of different indicators were determined by using IAHP method,including temperature,relative humidity,concentrations of carbon dioxide(CO_(2)),ammonia(NH_(3)),hydrogen sulfide(H_(2)S),and air speed.The construction method of fuzzy membership function and the calculation method of the parameters were proposed following the principle that the summation of membership degrees is equal to 1.Three basic types of membership functions(MFs),i.e.,ridgemf,gaussmf,and trimf were used to build an evaluation model which fitted IAHP-FCE well.The proposed method was verified and applied based on the environmental data in different seasons obtained from a pig farm in Zhenjiang City,Jiangsu Province,China.It is demonstrated that the proposed IAHP-FCE model with various types of MFs has drawn a unique and consistent conclusion.Moreover,the IAHP-FCE model has a higher correlation coefficient of 0.874 compared with the single-factor evaluation(SFE)model.The IAHP-FCE model could be served as a beneficial strategy for the precise regulation and early warning of environmental conditions to improve sow welfare.展开更多
The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space man...The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space manipulator systems, flexible arms and joints can induce drastic dynamic instabilities. In applications such as the space station, kinematic error due to structural deformation can jointly affect the performance characteristics. And it is crucial for accuracy control of space manipulator to establish a precision index. Here we analyze the dynamics characteristic of flexible space manipulator considering the hysteresis of harmonic reducer based on method of nonconstraint boundary modal. For the sake of describing the output accuracy, we integrate the method of analytic hierarchy process(AHP) to establish a comprehensive evaluation index. A numerical simulation is performed to analyze the nonlinear dynamic characteristics of space manipulator with harmonic reducer. With the analysis of accuracy assessment, the relation among the hysteresis angle, rigidity and output accuracy is revealed. Considering the elastic modulus of flexible space manipulator and the hysteresis angle of harmonic reducer, we conduct an evaluation of output characteristics of flexible space manipulator with the proposed comprehensive evaluation index. The accuracy evaluation of output characteristics based on the proposed comprehensive evaluation index is implemented in the initial stage of space manipulator's design, which can not only solve the problems existing in the design but also save cost savings for ground tests. The results can be used in designing and optimizing future space manipulators, which may provide valuable references for design and thermal control of the space manipulator.展开更多
Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, ...Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, structural analysis, and optimization). SRE for planning mountain tunnels bridges the gap between the planning on the macro level and the design/analysis on the micro level regarding the risk management of infrastructural systems. A transition from subjective or qualitative description to objective or quantitative quantification of seismic risk is aimed to improve the seismic behavior of the mountain tunnel and thus reduce the associated seismic risk. A new method of systematic SRE for the planning mountain tunnel was presented herein. The method employs extension theory(ET)and an ET-based improved analytical hierarchy process. Additionally, a new risk-classification criterion is proposed to classify and quantify the seismic risk for a planning mountain tunnel. This SRE method is applied to a mountain tunnel in southwest China, using the extension model based on matter element theory and dependent function operation.The reasonability and flexibility of the SRE method for application to the mountain tunnel are illustrated.According to different seismic risk levels and classification criteria, methods and measures for improving the seismic design are proposed, which can reduce the seismic risk and provide a frame of reference for elaborate seismic design.展开更多
Bridge quality assessment is an important part in the final acceptance of new bridge construction,and it is also the main basis for the reinforcement or removal of old bridges.We evaluated the weight of each affecting...Bridge quality assessment is an important part in the final acceptance of new bridge construction,and it is also the main basis for the reinforcement or removal of old bridges.We evaluated the weight of each affecting factor to the upper events using progressive analytical hierarchy process(AHP)with the adoption of 3 scaling,reduced the calculation in analytical process,and precluded the nonuniformity of the scaling system.We obtained a comprehensive evaluation system of bridge quality, and verified its pra...展开更多
Evaluating performance of individual features of WiMAX technology is a topic of widespread discussion. Currently, there is no quantitative way of measuring WiMAX technology so that wireless operators can meet their de...Evaluating performance of individual features of WiMAX technology is a topic of widespread discussion. Currently, there is no quantitative way of measuring WiMAX technology so that wireless operators can meet their design objectives. This paper outlines a set of design criteria for WiMAX and provides a decision-making aid that ranks the importance of criteria using Analytic Hierarchy Process (AHP). This ranking should sufficiently reflect market expectations of the relative importance of various design criteria. A model integrating AHP priorities with enhanced Data Envelopment Analysis (DEA) is the basis for formulating a technological value in simple, comparable format. A case study is provided to show how this technological value is used to evaluate a three year network deployment plan. In the future, this model could be extended to WiMAX equipment suppliers for the purpose of validating performance targets of individual criteria, and enhancing supplier roadmaps for future network development.展开更多
文摘A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. To construct an optimized quality evaluation system for postgraduate dissertation (QESPD), we summarized the influencing factors and invited 10 experienced specialists to rate and prioritize them based on fuzzy analytic hierarchy process. Four primary indicators (innovation, integrity, scientificity and normativity) and 16 sub-indicators were selected to form the evaluation system. The order of primary indicators by weight, was innovation (0.4269), scientificity (0.2807), integrity (0.1728) and normativity (0.1196). The top five sub-dimensions were theoretical originality, scientific value, data reliability, design rationality and evidence credibility. To demonstrate the effectiveness of the proposed system, a case study was performed. In the case study, it was demonstrated that the established two-index-hierarchy QESPD in this study was a more scientific and reasonable evaluation system worthy of promotion and application.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 42010203)the National Natural Science Foundation of China(No.42176090)。
文摘Scallop culture is an important way of bottom-seeding marine ranching,which is of great significance to improve the current situation of fishery resources.However,there are some problems in site-selection evaluation of marine ranching,such as imperfect criteria system,complex structure,untargeted criteria quantification,etc.In addition,no site-selection evaluation method of bottom-seeding culture areas for scallops is available.Therefore,we established a hierarchy structure model according to the analytic hierarchy process(AHP)theory,in which social,physical,chemical,and biological environments are used as main criteria,and marine functional zonation,water depth,current,water temperature,salinity,substrate type,water quality,sediment quality,red tide,phytoplankton,and zooplankton are used as sub-criteria,on which a multi-parameter evaluation system is set up.Meanwhile,the dualism method,assignment method,and membership function method were used to quantify sub-criteria,and a quantitative evaluation for the entire criteria was added,including the evaluation and analysis of two types of unsuitable environmental situations.By overall consideration in scallop yield,quality,and marine ranching construction objectives,the weight of the main criteria could be determined.Five grades in the suitability corresponding to the evaluation result were divided,and the Python language was used to create an evaluation system for efficient calculation and intuitive presentation of the evaluation outcome.Eight marine cases were simulated based on existing survey data,and the results prove that the method is feasible for evaluating and analyzing the site selection of bottom-seeding culture areas for scallops under various environmental situations.The proposed evaluation method can be promoted for the site selection of bottom-seeding marine ranching.This study provided theoretical and methodological references for the site selection evaluation of other types of marine ranching.
基金This work was supported by the National Natural Science Foundation of China(Grant No.2016ZX05042004)the Joint Funds of the National Natural Science Foundation of China(Grant no.U1762104)+3 种基金the Major Scientific and Technological Projects of CNPC(Grant No.ZD2019-184-004)the Fundamental Research Funds for the Central Universities(20CX02306A)the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration EquipmentThe authors also would like to express their sincere gratitude to Dr.Zhang Dalei for his assistance in corrosion tests.
文摘Casing corrosion during CO2 injection or storage results in significant economic loss and increased production risks.Therefore,in this paper,a corroded casing risk assessment model based on analytic hierarchy process and fuzzy comprehensive evaluation is established to identify potential risks in time.First,the corrosion rate and residual strength characteristics are analyzed through corrosion tests and numerical simulations,respectively,to determine the risk factors that may lead to an accident.Then,an index system for corroded casing risk evaluation is established based on six important factors:temperature,CO2 partial pressure,flow velocity,corrosion radius,corrosion depth and wellhead pressure.Subsequently,the index weights are calculated via the analytic hierarchy process.Finally,the risk level of corroded casing is obtained via the fuzzy comprehensive evaluation.The corroded casing risk assessment model has been verified by a case well,which shows that the model is valuable and feasible.It provides an effective decision-making method for the risk evaluation of corroded casing in CO2 injection well,which is conductive to improve the wellbore operation efficiency.
基金supported by National Basic Research Program (973 Program,No.2004CB719402)National Natural Science Foundation of China (No.60736019)Natural Science Foundation of Zhejiang Province, China(No.Y105430).
文摘Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.
文摘Mekong River is one of the major international freshwater sources in the world. The Lower Mekong Basin (LMB) comprised of four downstream countries, including Thailand, Lao PDR, Cambodia, and Vietnam. The utilization of the basin’s water brings not only substantial benefits to the region ranging from hydropower to navigation, but also negative impacts caused by the unbalanced water using. The essential role of Mekong River requires all member nations to cooperate effectively for the sustainable development of the region. One of the most popular methods in the field of water resource management is a trustable tool called the Analytical Hierarchy Process (AHP). AHP is much appropriate for water resource policymaking. The literature, however, points out that there is no study to both structure the water using hierarchy and employ quantitative (objective) criteria to the AHP model in LMB case. With regard to water resource management, there are no previous studies applying AHP models to evaluating sustainable development of transboundary water resource in LMB case. This paper explores the evolution of water cooperation among Mekong countries and subsequently evaluates the water development scenarios in the LMB based on the water cooperation preferences of four LMB countries This study proposes a novel approach to analyzing, assessing water resource development scenarios characterized by sustainability indicators and to assisting in developing a suitable water policy in LMB according to the best cooperation scenario.
基金Science and Technology Foundation of Hunan Branch of China National Tobacco Corporation(HN2020KJ14,HN2020KJ17).
文摘Improving the stability of the homogenization process to achieve the homogeneity of tobacco products is one of important targets for the redrying industry.According to the specification for threshing and redrying process,a total of 14 indicators in three categories that affect the quality of the threshing and redrying process were selected.Using analytic hierarchy process,combined with expert experiences,a judgment matrix was constructed to conduct consistency test.The weights of indices in production were obtained.This will help in evaluating the actual production quality,finding the weak links of process and adjusting the parameters of the corresponding links in a targeted manner,thereby improving the quality of production process.
文摘There exists a growing demand for potable water resources to fill the abysmally insufficient water needs for domestic and industrial especially in the Basement Complex terrains of Nigeria. This situation is attributable to its complex hydrogeologic character. The present challenge has worsened due to the non-incorporation of integrated methods in groundwater exploration campaigns. To effectively combat the challenge of unacceptable failure rates in drilled water well development, there is a need for innovative scientific principles and quantitative assessment of groundwater resources to enhance sustainable and proper utilisation of these resources. Hence, it is the objective of this research to exploit the potential application of remote sensing, Geographic Information System (GIS), and Multi-Criteria Decision Analysis (MCDA) techniques and freely open datasets in mapping groundwater potential zones. Seven thematic maps have been produced based on factors that are deemed to influence and deemed to have significant control on the occurrence and movement of groundwater. These factors are geology, lineament density, slope, drainage density, rainfall, land-use/land cover, and soil class. Analytic Hierarchy Process (AHP) was used to assign normalised weights to the thematic maps based on the various relative contributions to groundwater occurrence and movement. These thematic maps were then processed in a GIS environment using the Weighted Overlay tool which implements the MCDA. The resulting Groundwater Potential Zones (GPZ) of the area gave rise to Five classes viz: Very good, Good, Moderate, Poor and Very Poor </span><span style="font-family:Verdana;">representing 19%, 8%, 14%, 47% and 13% respectively. It is recommended that the GPZ map should be used as a reconnaissance tool for selecting prospective sites for detailed groundwater resource exploitation.
基金Supported by Big Investigation Item,Ministry of Land and Resources,China(1212010734002,1212010634204)
文摘[ Objective] The research aimed to evaluate ecological vulnerability of the vegetation in the Subei Lake watershed based on analytic hierarchy process (AHP). [ Method] From actual situation of the vegetation ecology in the Subei Lake watershed, by the established evaluation index system of vegetation ecology, based on AHP, indicator weight at each layer was determined. Comprehensive index method was used to calculate ecological fragility degree of the vegetation in each evaluation unit to evaluate ecological vulnerability of the vegetation. [ Result] Ecological vulnera- bility of the vegetation was divided into four levels, such as extremely fragile, highly fragile, moderately fragile and lowly fragile in the Subei Lake watershed. The extremely fragile area, where buried depth of the groundwater level was generally less than 1.0 meter, distributed in beach zones near the Subei Lake, and its relationship between vegetation and groundwater was close. The lowly fragile areas scattered in the ridge zone around the Subei Lake watershed, where buried depth of the groundwater level was 10.0 -40.0 meters, and their relationship between vegetation growth and groundwater depth was not obvious. Buried depth of groundwater had the most sensitive influence on vegetation ecology, and it was the key factor between utilization of groundwater resources and eco-environment protection in the study area. E Conclusion] The researches provided scientific evidence for regional eco-environment protection, rational development and utilization of water resources, and coordinated development of economy and society.
文摘As a difficult problem, sidewall instability has been beset drilling workers all the time. Not only does it cause huge economic losses, but also it determines the success or failure of drilling engineering. Due to complex relationship between various factors which influence sidewall stability, it hasn’t been found a widely applied method to predicate sidewall stability so far. Therefore, in order to formulate corresponding measures to ensure successful drilling, searching for a kind of better method to forecast sidewall stability before drilling becomes an imperative and significant topic for drilling engineering. On the basis of traditional sidewall stability analytical method, we have put forward the Fuzzy Comprehensive Evaluation Method to forecast sidewall stability regulation using physico-chemical performance parameters of the clay mineral. This method has been improved by introducing the Analytic Hierarchy Process (AHP) and the Maximum Subjection Principle in the application process. After introducing Analytic Hierarchy Process to identify weight, and Maximum Subjection Principle to obtain evaluation results, it has reduced the influence of human factors and enhanced the accuracy of the fuzzy evaluation results. The application in Hailaer Area indicates that this method can predict sidewall stability of gas-oil well with high credibility and strong practicability.
基金National Social Science Foundation of China(No.17CGJ002)Key Project of Education and Teaching Reform of Undergraduate Universities in Fujian Province,China(No.FBJG20190130)Educational and Scientific Research Project for Young and Middle-aged Teachers in Fujian Province,China(No.JAS19371)
文摘This research,from the theories of management science,supply chain management and logistics engineering,on the basis of extensive investigations,and using the method of analytic hierarchy process(AHP),evaluates the present situation of logistics service of agricultural products.Taking Nanping City(Nanping)as a case,it explores the obstacles existing in current logistics service system and the factors limiting the development of agricultural product logistics service.Combining with the theory of modern logistics system,it reveals the problems in the logistics system and the causes,and then constructs the strategy of optimization for agricultural product logistics service in Nanping.The conclusion of the study can be references for the government to make scientific strategies for the development of the agricultural product logistics service and help logistics enterprises improve their service level.
文摘Generally, mine roads are located in the mountain areas, as its complex topography, mostly along the river near the cliffs, steep bend anxious, the mine road design has to adopt lower technical standards relatively and usually is lack of traffic safety facilities. Especially, there are mainly medium-sized vehicles on mine road, under the heavy traffic vehicles affect repeatedly, high frequency of traffic accidents more easily happen in mine road area and cause serious effects on life or property. Combining with the particularity of mine road safety environment, this paper studies the basic theory of safety evaluation, analyses the factors of traffic safety design and special mine terrain conditions, and then establishes mine road safety index system and evaluation model based on the principles such as systematicness, independent indexes, qualitative and quantitative analysis, feasibility, scientificity and reliability. At last, the paper successfully evaluates the safety of road in Huang Mailing phosphate rock area with fuzzy AHP method based on engineering project.
文摘Today's banking institutions spread their product and service line on a daily basis. This effort to increase competitiveness is also creating an overstocked supply for existing and new clients. Not every product is meant for every client and aggressive sales strategies tend to repel clients which can cause serious problems in long-term client-bank relations. This paper will analyze savings and investments products along with their adaptation and modulation regarding client needs. Accordingly, banks will be able to offer particular products to clients with specific needs and wishes. The analytic hierarchy process, or simply AHP method, represents a process which will be able to transform client's demands and affinities into a customized offer. It is an easy-to-implement method used in any step of the decision-making process; the process must have multiple alternatives and each of them carries specific characteristics. The decision maker ranks all the characteristics and simultaneously all the alternatives, according to his affinities forming a final decision. This paper will explain how banks will be able to adapt to client needs and wishes in the future using the AHP method.
文摘Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltration criteria: precipitation, land slope, soil erodibility (K-factor), vegetation cover (NDVI), land use, drainage density, saturated hydraulic conductivity, and hydrologic soil group. Respective criteria weights were derived using a Fuzzy Analytic Hierarchy Process (FAHP) supported by expert opinion. A survey of 10 experts, representing New Mexico Institute of Mining and Technology (NMT), the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the United States Geologic Survey (USGS), provided model input data for an integrated pair-wise comparison matrix for soil erosion and for infiltration. Individual criteria weights were determined by decomposing the respective fuzzy synthetic extent matrix using the centroid method. GIS layers were then combined based on criteria weights to produce maps of soil erosion potential and infiltration potential. A composite watershed vulnerability map was generated by equal weighting of each input map. Model results were categorized into five vulnerability categories: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The resulting FAHP/GIS model was used to generate a watershed vulnerability map of discrete areas in Bernalillo County, which may be vulnerable to stormwater run-off events and soil erosion. Such high volume run-off events can cause erosion damage to property and infrastructure. Alternatively, in areas near urban development, stormwater run-off may contribute non-point-source pollutant contamination of New Mexico’s surface water resources. The most problematic areas in Bernalillo County are present in the Eastern and Northwestern portions. However, less than 1% of the total area lies within the lowest and highest vulnerability categories with the majority centered around moderate vulnerability. The results of the model were compared with a previously published crisp AHP method. Both methods showed similar regional vulnerability trends. This MCDS/GIS approach is intended to provide support to local governments and decision makers in selection of suitable structural or nonstructural stormwater control measures.
文摘This paper concerns with proposing a fuzzy logic based expert system to breakthrough the problem of alternatives evaluation in Analytic Hierarchy Process (AHP). AHP as a multi criteria decision aid helped decision makers for ana-lyzing and prioritizing the alternatives in a hierarchical structure. During times AHP encountered some problems. Hence, fuzzy analytic hierarchy process (FAHP) and some other extensions of AHP have been configured to solve those problems.
基金supported by the National Key R&D Program of China(No.2017YFC0211502).
文摘Indicators are the basis for judging the working performance of exhaust hood and capture performance are usually used as the only indicator.An evaluation index system including three factors of cooking oil fumes(COF)instantaneous capture,health risk impact and thermal comfort was proposed to assess the comprehensive performance of exhaust hood in the present study.The primary capture efficiency(PCE)of formaldehyde,the PCE of particulate matter with the diameter less than or equal to 2.5μm(PM_(2.5)),the incremental lifetime cancer risk(ILCR)of formaldehyde,the ILCR of PM_(2.5)and the predicted mean vote(PMV),which can all be quantified with the aid of computational fluid dynamics(CFD),were selected as the indicators.And the analytic hierarchy process(AHP)method was introduced to perform the comprehensive performance evaluation of exhaust hood.The performance of two exhaust hood structures(grille and orifice type)with three exhaust rates(3000,4000,and 5000 m^(3)/h)in two cooking zones of a university canteen kitchen were evaluated.The result showed that the reduction of ILCR of COF exposure is the most important to the performance of exhaust hood.The comprehensive performance of orifice exhaust hood with exhaust rate of 4000 and 5000 m^(3)/h are optimal;the orifice exhaust hood with exhaust of 3000 m^(3)/h and grille exhaust hood with exhaust rate of 5000 m^(3)/h are moderate;the grille exhaust hood with exhaust rate of 3000 and 4000 m^(3)/h are low.Decision-making priorities based on comprehensive and individual performance are not exactly the same in the two cooking zones.It is necessary to use the index system to evaluate the comprehensive performance of exhaust hood that considers the impact on human health and thermal comfort.
基金The study is financially supported by the National Natural Science Foundation of China(Grant No.31172243)Agricultural Science and Technology Independent Innovation Fund Project(Grant No.CX(16)1006)of Jiangsu Province,Advantage Discipline Construction Project(PAPD,No.87-2018)of Jiangsu UniversityPostgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18-2262).
文摘Since there are many interacting influence factors of the comfortable degree of lactating sows,a method that combines improved analytic hierarchy process(IAHP)and fuzzy comprehensive evaluation(FCE)was introduced to conduct a quantitative evaluation of the comfortable degree.Besides,an evaluation index system was established,and the weights of different indicators were determined by using IAHP method,including temperature,relative humidity,concentrations of carbon dioxide(CO_(2)),ammonia(NH_(3)),hydrogen sulfide(H_(2)S),and air speed.The construction method of fuzzy membership function and the calculation method of the parameters were proposed following the principle that the summation of membership degrees is equal to 1.Three basic types of membership functions(MFs),i.e.,ridgemf,gaussmf,and trimf were used to build an evaluation model which fitted IAHP-FCE well.The proposed method was verified and applied based on the environmental data in different seasons obtained from a pig farm in Zhenjiang City,Jiangsu Province,China.It is demonstrated that the proposed IAHP-FCE model with various types of MFs has drawn a unique and consistent conclusion.Moreover,the IAHP-FCE model has a higher correlation coefficient of 0.874 compared with the single-factor evaluation(SFE)model.The IAHP-FCE model could be served as a beneficial strategy for the precise regulation and early warning of environmental conditions to improve sow welfare.
文摘The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space manipulator systems, flexible arms and joints can induce drastic dynamic instabilities. In applications such as the space station, kinematic error due to structural deformation can jointly affect the performance characteristics. And it is crucial for accuracy control of space manipulator to establish a precision index. Here we analyze the dynamics characteristic of flexible space manipulator considering the hysteresis of harmonic reducer based on method of nonconstraint boundary modal. For the sake of describing the output accuracy, we integrate the method of analytic hierarchy process(AHP) to establish a comprehensive evaluation index. A numerical simulation is performed to analyze the nonlinear dynamic characteristics of space manipulator with harmonic reducer. With the analysis of accuracy assessment, the relation among the hysteresis angle, rigidity and output accuracy is revealed. Considering the elastic modulus of flexible space manipulator and the hysteresis angle of harmonic reducer, we conduct an evaluation of output characteristics of flexible space manipulator with the proposed comprehensive evaluation index. The accuracy evaluation of output characteristics based on the proposed comprehensive evaluation index is implemented in the initial stage of space manipulator's design, which can not only solve the problems existing in the design but also save cost savings for ground tests. The results can be used in designing and optimizing future space manipulators, which may provide valuable references for design and thermal control of the space manipulator.
基金financially supported by the National Key Research and Development Program of China (2016YFB1200401)the Western Construction Project of the Ministry of Transport (Grant No. 2015318J29040)
文摘Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, structural analysis, and optimization). SRE for planning mountain tunnels bridges the gap between the planning on the macro level and the design/analysis on the micro level regarding the risk management of infrastructural systems. A transition from subjective or qualitative description to objective or quantitative quantification of seismic risk is aimed to improve the seismic behavior of the mountain tunnel and thus reduce the associated seismic risk. A new method of systematic SRE for the planning mountain tunnel was presented herein. The method employs extension theory(ET)and an ET-based improved analytical hierarchy process. Additionally, a new risk-classification criterion is proposed to classify and quantify the seismic risk for a planning mountain tunnel. This SRE method is applied to a mountain tunnel in southwest China, using the extension model based on matter element theory and dependent function operation.The reasonability and flexibility of the SRE method for application to the mountain tunnel are illustrated.According to different seismic risk levels and classification criteria, methods and measures for improving the seismic design are proposed, which can reduce the seismic risk and provide a frame of reference for elaborate seismic design.
基金Funded by the Development Foundation of Key Laboratory in Bridge-structure Engineering Ministry of Communication,P.R.China(No.CQSLBF-Y07-3)
文摘Bridge quality assessment is an important part in the final acceptance of new bridge construction,and it is also the main basis for the reinforcement or removal of old bridges.We evaluated the weight of each affecting factor to the upper events using progressive analytical hierarchy process(AHP)with the adoption of 3 scaling,reduced the calculation in analytical process,and precluded the nonuniformity of the scaling system.We obtained a comprehensive evaluation system of bridge quality, and verified its pra...
文摘Evaluating performance of individual features of WiMAX technology is a topic of widespread discussion. Currently, there is no quantitative way of measuring WiMAX technology so that wireless operators can meet their design objectives. This paper outlines a set of design criteria for WiMAX and provides a decision-making aid that ranks the importance of criteria using Analytic Hierarchy Process (AHP). This ranking should sufficiently reflect market expectations of the relative importance of various design criteria. A model integrating AHP priorities with enhanced Data Envelopment Analysis (DEA) is the basis for formulating a technological value in simple, comparable format. A case study is provided to show how this technological value is used to evaluate a three year network deployment plan. In the future, this model could be extended to WiMAX equipment suppliers for the purpose of validating performance targets of individual criteria, and enhancing supplier roadmaps for future network development.