Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations ...Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.展开更多
We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the follo...We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.展开更多
By using two different transformations, several types of exact analytic solutions for a class of nonlinear coupled scalar field equation are obtained, which contain soliton solutions, singular solitary wave solutions ...By using two different transformations, several types of exact analytic solutions for a class of nonlinear coupled scalar field equation are obtained, which contain soliton solutions, singular solitary wave solutions and triangle function solutions. These results can be applied to other nonlinear equations. In addition, parts of conclusions in some references are corrected.展开更多
In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.
Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we al...Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we also show its non-relativistic limit.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
A comparison between a non-Gaussian puff model and an advanced time-dependent model to simulate the pollutant dispersion in the Planetary Boundary Layer is presented. The puff model is based on a general technique for...A comparison between a non-Gaussian puff model and an advanced time-dependent model to simulate the pollutant dispersion in the Planetary Boundary Layer is presented. The puff model is based on a general technique for solving the K-equation, using the truncated Gram-Charlier expansion (type A) of the concentration field and finite set equations for the corresponding moments. The other model (named ADMM: Analytical Dispersion Multilayers Model) is an semi- analytical solution to the time-dependent two-dimensional advection-diffusion equation based on a discretization of the PBL in N sub-layers;in each sub-layers the advection-diffusion equation is solved by the Laplace transform technique, considering an average value for eddy diffusivity and the wind speed. A preliminary performance evaluation is shown in the case of continuous emission from an elevated source in a variable boundary layer. Both models were able to correctly reproduce the concentration field measured and so to be used as operative air pollution models.展开更多
Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many ...Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.展开更多
In this paper ,in the space that possesses restoring nucleus, we obtain analyticsolutions in the series form for the steady-state convection diffusion equation The solutions have the following characteristics: (1) the...In this paper ,in the space that possesses restoring nucleus, we obtain analyticsolutions in the series form for the steady-state convection diffusion equation The solutions have the following characteristics: (1) they ave given in the accurate form:(2)they can be calculated in the explicit way, without solving the eguations;(3) the error of the approximate solution will be monotonically decreased under the meaning of the norm of the spaces when a cardinal term is added in the procedure of numerical solution .Finally, we calculated the example in [2] the result shows that our solution is more accurate than that in [2].展开更多
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressur...This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.展开更多
An analytical solution(ANA)for a fractional-slot double-layer-winding open-slot vernier permanent magnet(VPM)machine with tooth tips is presented.Magnetic vector potential equations are analytically solved using the t...An analytical solution(ANA)for a fractional-slot double-layer-winding open-slot vernier permanent magnet(VPM)machine with tooth tips is presented.Magnetic vector potential equations are analytically solved using the technique of variable separation in four subdomains in a two-dimensional polar coordinate system.Based on the solved magnetic vector potential,the flux density distribution,torque,flux linkage,inductance,electromotive force(EMF)and power factor are analytically developed.An 18-slot/32-rotor-pole prototype is analyzed,and the results match well with the finite element analysis(FEA),which validates that the ANA consumes less time than FEA.Therefore,the tooth tips are optimized using the ANA to improve the average torque.Moreover,the ANA can be used to evaluate the demagnetization withstand capabilities of permanent magnets.The material utilization,slot-filling factor,EMF,and torque are compared between the models with three and four subdomains.Finally,an experimental prototype is constructed and tested,and the results validate the ANA.展开更多
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic f...A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic fields, and can dramatically improve the utilization of the pulsed field. The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloeh equations. In the numerical simulation, the applied magnetic field is a pulsed magnetic field up to 80 T, and the wideband continuous radio frequency (RF) excitation is a band-limited (0.68-3.40 GHz) white noise. ~lrthermore, the influences of some experimental parameters, such as relaxation time, applied magnetic field strength and wideband continuous RF power, on the WB-CW-NMR signal are analyzed briefly. Finally, a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed, and the basic requirements of this experimental system are discussed. Meanwhile, the amplitude of the NMR signal, the level of noise and RF interference in WB-CW-NMR experiments are estimated, and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference.展开更多
Updated version of local non-equilibrium diffusion model (LNDM) for rapid solidification of binary alloys was considered. The LNDM takes into account deviation from local equilibrium of solute concentration and solu...Updated version of local non-equilibrium diffusion model (LNDM) for rapid solidification of binary alloys was considered. The LNDM takes into account deviation from local equilibrium of solute concentration and solute flux fields in bulk liquid. The exact solutions for solute concentration and flux in bulk liquid were obtained using hyperbolic diffusion equations. The results show the transition from diffusion-limited to purely thermally controlled solidification with effective diffusion coefficient →0 and complete solute trapping KLNDM(v)→1 at v→vDb for any kind of solid-liquid interface kinetics. Critical parameter for diffusionless solidification and complete solute trapping is the diffusion speed in bulk liquid vDb. Different models for solute trapping at the interface with different interface kinetic approaches were considered.展开更多
This paper is concerned with a nonlinear iterative equation with first order derivative. By construction a convergent power series solution, analytic solutions for the original equation are obtained.
Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressibl...Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressible flow. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation assuming turbulence parameterization for realistic physical scenarios. We present the general time dependent three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.展开更多
A puff model for the dispersion of material from fugitive hazardous emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ...A puff model for the dispersion of material from fugitive hazardous emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. Both approaches accept wind and eddy diffusion coefficients with any restriction in their height functions. Comparisons between values predicted by the models against experimental ground-level concentrations (from Copenhagen data set) are shown. The preliminary results confirm the applicability of the approaches proposed and are promising for future work.展开更多
This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coord...This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coordinates.The highly nonlinear equations are simplified with the help of non-dimensional variables under the assumption of mild stenosis.The solution of reduced nonlinear equation subject to boundary condition of porous walls having the effects of Darcy's number and slip parameter are computed analytically with the help of perturbation method.Effects of emerging parameters such as impedance A,slip parameter a,stenosis height 6,magnetic parameter and stress component Srz on velocity are illustrated graphically.The streamlines have also been presented to discuss the trapping bolus discipline.展开更多
The water temperature in reservoirs is difficult to be predicted by numerical simulations. In this article, a statistical model of forecasting the water temperature was proposed. In this model, the 3-D thermal conduct...The water temperature in reservoirs is difficult to be predicted by numerical simulations. In this article, a statistical model of forecasting the water temperature was proposed. In this model, the 3-D thermal conduction-diffusion equations were converted into a system consisting of 2-D equations with the Fourier expansion and some hypotheses. Then the statistical model of forecasting the water temperature was developed based on the analytical solution to the 2-D thermal equations. The~ simplified statistical model can elucidate the main physical mechanism of the temperature variation much more clearly than the numerical simulation with the Navier-Stokes equations. Finally, with the presented statistical model, the distribution of water temperature in the Shangyoujiang reservoir was determined.展开更多
文摘Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.
文摘We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.
文摘By using two different transformations, several types of exact analytic solutions for a class of nonlinear coupled scalar field equation are obtained, which contain soliton solutions, singular solitary wave solutions and triangle function solutions. These results can be applied to other nonlinear equations. In addition, parts of conclusions in some references are corrected.
文摘In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.
文摘Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we also show its non-relativistic limit.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
文摘A comparison between a non-Gaussian puff model and an advanced time-dependent model to simulate the pollutant dispersion in the Planetary Boundary Layer is presented. The puff model is based on a general technique for solving the K-equation, using the truncated Gram-Charlier expansion (type A) of the concentration field and finite set equations for the corresponding moments. The other model (named ADMM: Analytical Dispersion Multilayers Model) is an semi- analytical solution to the time-dependent two-dimensional advection-diffusion equation based on a discretization of the PBL in N sub-layers;in each sub-layers the advection-diffusion equation is solved by the Laplace transform technique, considering an average value for eddy diffusivity and the wind speed. A preliminary performance evaluation is shown in the case of continuous emission from an elevated source in a variable boundary layer. Both models were able to correctly reproduce the concentration field measured and so to be used as operative air pollution models.
文摘Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.
文摘In this paper ,in the space that possesses restoring nucleus, we obtain analyticsolutions in the series form for the steady-state convection diffusion equation The solutions have the following characteristics: (1) they ave given in the accurate form:(2)they can be calculated in the explicit way, without solving the eguations;(3) the error of the approximate solution will be monotonically decreased under the meaning of the norm of the spaces when a cardinal term is added in the procedure of numerical solution .Finally, we calculated the example in [2] the result shows that our solution is more accurate than that in [2].
文摘This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.
文摘An analytical solution(ANA)for a fractional-slot double-layer-winding open-slot vernier permanent magnet(VPM)machine with tooth tips is presented.Magnetic vector potential equations are analytically solved using the technique of variable separation in four subdomains in a two-dimensional polar coordinate system.Based on the solved magnetic vector potential,the flux density distribution,torque,flux linkage,inductance,electromotive force(EMF)and power factor are analytically developed.An 18-slot/32-rotor-pole prototype is analyzed,and the results match well with the finite element analysis(FEA),which validates that the ANA consumes less time than FEA.Therefore,the tooth tips are optimized using the ANA to improve the average torque.Moreover,the ANA can be used to evaluate the demagnetization withstand capabilities of permanent magnets.The material utilization,slot-filling factor,EMF,and torque are compared between the models with three and four subdomains.Finally,an experimental prototype is constructed and tested,and the results validate the ANA.
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.
基金Supported by National Natural Science Foundation of China(11475067)the Innovative Research Foundation of Huazhong University of Science and Technology(2015 ZDTD017)the Experimental Apparatus Research Project of Wuhan Pulsed High Magnetic Field Center(2015KF17)
文摘A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic fields, and can dramatically improve the utilization of the pulsed field. The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloeh equations. In the numerical simulation, the applied magnetic field is a pulsed magnetic field up to 80 T, and the wideband continuous radio frequency (RF) excitation is a band-limited (0.68-3.40 GHz) white noise. ~lrthermore, the influences of some experimental parameters, such as relaxation time, applied magnetic field strength and wideband continuous RF power, on the WB-CW-NMR signal are analyzed briefly. Finally, a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed, and the basic requirements of this experimental system are discussed. Meanwhile, the amplitude of the NMR signal, the level of noise and RF interference in WB-CW-NMR experiments are estimated, and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference.
文摘Updated version of local non-equilibrium diffusion model (LNDM) for rapid solidification of binary alloys was considered. The LNDM takes into account deviation from local equilibrium of solute concentration and solute flux fields in bulk liquid. The exact solutions for solute concentration and flux in bulk liquid were obtained using hyperbolic diffusion equations. The results show the transition from diffusion-limited to purely thermally controlled solidification with effective diffusion coefficient →0 and complete solute trapping KLNDM(v)→1 at v→vDb for any kind of solid-liquid interface kinetics. Critical parameter for diffusionless solidification and complete solute trapping is the diffusion speed in bulk liquid vDb. Different models for solute trapping at the interface with different interface kinetic approaches were considered.
文摘This paper is concerned with a nonlinear iterative equation with first order derivative. By construction a convergent power series solution, analytic solutions for the original equation are obtained.
文摘Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressible flow. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation assuming turbulence parameterization for realistic physical scenarios. We present the general time dependent three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.
文摘A puff model for the dispersion of material from fugitive hazardous emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. Both approaches accept wind and eddy diffusion coefficients with any restriction in their height functions. Comparisons between values predicted by the models against experimental ground-level concentrations (from Copenhagen data set) are shown. The preliminary results confirm the applicability of the approaches proposed and are promising for future work.
文摘This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coordinates.The highly nonlinear equations are simplified with the help of non-dimensional variables under the assumption of mild stenosis.The solution of reduced nonlinear equation subject to boundary condition of porous walls having the effects of Darcy's number and slip parameter are computed analytically with the help of perturbation method.Effects of emerging parameters such as impedance A,slip parameter a,stenosis height 6,magnetic parameter and stress component Srz on velocity are illustrated graphically.The streamlines have also been presented to discuss the trapping bolus discipline.
基金the National Natural Science Foundation of China (Grant Nos. 50539010, 50539020, and 50579080)
文摘The water temperature in reservoirs is difficult to be predicted by numerical simulations. In this article, a statistical model of forecasting the water temperature was proposed. In this model, the 3-D thermal conduction-diffusion equations were converted into a system consisting of 2-D equations with the Fourier expansion and some hypotheses. Then the statistical model of forecasting the water temperature was developed based on the analytical solution to the 2-D thermal equations. The~ simplified statistical model can elucidate the main physical mechanism of the temperature variation much more clearly than the numerical simulation with the Navier-Stokes equations. Finally, with the presented statistical model, the distribution of water temperature in the Shangyoujiang reservoir was determined.