A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show tha...A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show that the peak shear strength and shear stiffness of bolted sandstone joints were significantly reduced after 12 dryewet cycles.The decrease in the shear strength of rough joints is more significant than that of flat joints.Due to the decrease in the strength of the surrounding rock,the deformation characteristics of the bolts are significantly affected by the number of dryewet cycles performed.With an increase in the number of dryewet cycles,the plastic hinge length of the bolt gradually increases,resulting in an increase in the corresponding shear displacement when the bolt breaks.Compared with the tensileeshear failure mode of the bolts in flat joints,the tensileebending failure mode arises for bolts in rough joints.A shear curve model describing the whole process of bolted rock joints is established based on the deterioration of rock mechanical parameters caused by dry‒wet cycles.The model proposed considers the change in the friction angle of the joint surface with the shear displacement,which is applied to the derivation of the model by introducing the dynamic evolutionary friction angle parameter.The reasonably good agreement between a predicted curve and the corresponding experimental curve indicates that this method can effectively predict the shear strength of a bolted rock joint involving rough joint under dryewet cycling conditions.展开更多
The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for...The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.展开更多
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general...To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.展开更多
Modem analytical models for anti-monopoly laws are a core element of the application of those laws. Since the Anti-Monopoly Law of the People's Republic of China was promulgated in 2008, law enforcement and judicial ...Modem analytical models for anti-monopoly laws are a core element of the application of those laws. Since the Anti-Monopoly Law of the People's Republic of China was promulgated in 2008, law enforcement and judicial authorities have applied different analytical models, leading to divergent legal and regulatory outcomes as similar cases receive different verdicts. To select a suitable analytical model for China's Anti-Monopoly Law, we need to consider the possible contribution of both economic analysis and legal formalism and to learn from the mature systems and experience of foreign countries. It is also necessary to take into account such binding constraints as the current composition of China's anti-monopoly legal system, the ability of implementing agencies and the supply of economic analysis, in order to ensure complementarity between the analytical model chosen and the complexity of economic analysis and between the professionalism of implementing agencies and the cost of compliance for participants in economic activities. In terms of institutional design, the models should provide a considered explanation of the legislative aims of the law's provisions. It is necessary, therefore, to establish a processing model of behavioral classification that is based on China's national conditions, applies analytical models using normative comprehensive analysis, makes use of the distribution rule of burden of proof, improves supporting systems related to analytical models and enhances the ability of public authorities to implement the law.展开更多
Congestion is one of the well-studied problems in computer networks,which occurs when the request for network resources exceeds the buffer capacity.Many active queue management techniques such as BLUE and RED have bee...Congestion is one of the well-studied problems in computer networks,which occurs when the request for network resources exceeds the buffer capacity.Many active queue management techniques such as BLUE and RED have been proposed in the literature to control congestions in early stages.In this paper,we propose two discrete-time queueing network analytical models to drop the arrival packets in preliminary stages when the network becomes congested.The first model is based on Lambda Decreasing and it drops packets from a probability value to another higher value according to the buffer length.Whereas the second proposed model drops packets linearly based on the current queue length.We compare the performance of both our models with the original BLUE in order to decide which of these methods offers better quality of service.The comparison is done in terms of packet dropping probability,average queue length,throughput ratio,average queueing delay,and packet loss rate.展开更多
Constitutive models aimed at predicting the mechanical response of lead-core bearing devices for passive seismic isolation are discussed in this paper. The study is focused on single-degree-of-freedom models which pro...Constitutive models aimed at predicting the mechanical response of lead-core bearing devices for passive seismic isolation are discussed in this paper. The study is focused on single-degree-of-freedom models which provide a relation between the shear displacement (shear strain) and the shear force (shear stress) in elastomeric and lad-core rubber bearings. Classical Bouc-Wen model along with a numerical procedure for identification of the model constants is described. Alternatively, a constitutive relation introducing a damage variable aimed at assessing the material degradation is also considered.展开更多
There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study th...There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study the dynamic responses with hydrodynamic influence coefficients for different water depths. The beam theory and potential theory are introduced to produce the models. The hydrodynamic coefficients and dynamic responses of bridges are evaluated by the boundary element method and by the Galerkin method of weighted residuals, respectively. Considering causal relationship between the frequencies of the oscillation of floating bridges and the added mass coefficients, an iteration method is introduced to compute hydrodynamic frequencies. The results indicate that water depth has little influence upon the dynamic responses of both types of floating bridges, so that the effect of water depth can be neglected during the course of designing floating bridges.展开更多
Congestion control is among primary topics in computer network in which random early detection(RED)method is one of its common techniques.Nevertheless,RED suffers from drawbacks in particular when its“average queue l...Congestion control is among primary topics in computer network in which random early detection(RED)method is one of its common techniques.Nevertheless,RED suffers from drawbacks in particular when its“average queue length”is set below the buffer’s“minimum threshold”position which makes the router buffer quickly overflow.To deal with this issue,this paper proposes two discrete-time queue analytical models that aim to utilize an instant queue length parameter as a congestion measure.This assigns mean queue length(mql)and average queueing delay smaller values than those for RED and eventually reduces buffers overflow.A comparison between RED and the proposed analytical models was conducted to identify the model that offers better performance.The proposed models outperform the classic RED in regards to mql and average queueing delay measures when congestion exists.This work also compares one of the proposed models(RED-Linear)with another analytical model named threshold-based linear reduction of arrival rate(TLRAR).The results of the mql,average queueing delay and the probability of packet loss for TLRAR are deteriorated when heavy congestion occurs,whereas,the results of our RED-Linear were not impacted and this shows superiority of our model.展开更多
Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechani...Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechanism analysis and fault feature extraction.However,in conventional investigations,this issue is not well and fully addressed from the perspective of theoretical analysis and physical derivation.In this study,an improved analytical model for time-varying displacement excitations(TVDEs)caused by surface defects is theoretically formulated.First and foremost,the physical mechanism for the effect of defect sizes on the physical process of rolling element-defect interaction is revealed.According to the physical interaction mechanism between the rolling element and different types of defects,the relationship between time-varying displacement pulse and defect sizes is further analytically derived.With the obtained time-varying displacement pulse,the dynamic model for the deep groove bearings considering the internal excitation caused by the surface defect is established.The nonlinear vibration responses and fault features induced by surface defects are analyzed using the proposed TVDE model.The results suggest that the presence of surface defects may result in the occurrence of the dual-impulse phenomenon,which can serve as indexes for surface-defect fault diagnosis.展开更多
Waterflood-induced fractures,also known as self-induced fractures,spontaneously form at injection wells during waterflooding.These fractures propagate long distances through rock,allowing injected fluids to travel far...Waterflood-induced fractures,also known as self-induced fractures,spontaneously form at injection wells during waterflooding.These fractures propagate long distances through rock,allowing injected fluids to travel far away from a well,both within and outside the flooding layer.Essentially,the me-chanics of waterflood-induced fracture propagation is similar to that of hydraulic fractures,which are intentionally created for reservoir stimulation.Fracturing models developed for hydraulic fractures can also be applied to waterflood-induced fractures.However,waterflood-induced fractures are typically pumped with much larger volumes of water or brine and grow much longer in time.As a result,fluid leakoff from waterflood fractures into the formation is more extensive and two-dimensional(2D),a characteristic that is often ignored in a majority of modern fracturing simulators,making their appli-cation to waterflood fractures unreliable.In this work,we revisit the problem of leakoff for long-growing waterflood-induced fractures and develop a new analytical model for fluid leakoff that provides improved predictions of fracture geometry and can be easily implemented in fracturing simulators.We incorporate the developed solution into the classical Perkins-Kern-Nordgren(PKN)model of fracture growth,which shows that the choice of the Carter or a 2D leakoff model greatly impacts fracture ge-ometry at large time.The conducted parametric study shows while a toughness-dominated regime af-fects fracture evolution,most of fracture lifetime occurs in a viscosity-and-leakoff-dominated regime.We also develop an asymptotic solution for a leakoff profile in the limiting case of 2D leakoff domination(~~M and~~K).Finally,we study 3D fracture growth and out-of-zone injection with three layers and a complex structure of zones.The study shows that ignoring the 2D leakoff during simulation results in a significant overestimation of fracture geometry predictions.The present work,thus,plays an important role in improving waterflood fracture modelling,as it highlights the significance of 2D leakoff in waterflood-induced fractures and provides a reliable analytical model for fluid leakoff that can be incorporated into modern fracture simulators.展开更多
This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to ...This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.展开更多
In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare co...In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.展开更多
Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flo...Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.展开更多
Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults...Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts.展开更多
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial t...Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial transformation temperature and the accurate "temperature integral" approximations are incorporated to obtain an extended analytical model. Numerical approach demonstrated that the extended analytical model prediction for transformed fraction and transformation rate is in good agreement with the exact numerical calculation. The new model can describe more precisely the kinetic behavior than the original analytical model, especially for transformation with relatively high initial transformation temperature. The kinetic parameters obtained from the new model are more accurate and reasonable than those from the original analytical model.展开更多
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma...The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.展开更多
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is pro...Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.展开更多
The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon productio...The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon production and the management of fluxes particularly the groundwater venues. A comprehensive study is thus conducted to develop a dynamic and analytic model for diagnosing the production performances with a particular view on the management of groundwater venues. The three main concerned reservoirs subdivided on subunits evidence their proper characteristics. The porous media, their densities, the internal flows and the water injection techniques such as water flooding were thus adopted. The oil viscosity variability within the reservoirs creates different levels of mobility between water and oil, highlighting the challenges of water management. The material balance model and the behavior of the well analysis were taken in consideration within the identified aquifer, emphasizing the importance of keeping the pressure through injection. The control of water productions, the management of the reservoir, the well strategical position and the specific completions lead to the model functioning. In addition, the CO log and the Pulsed Neutron indicate their limitations as a result of the water salinity and the porosity of the aquifer. The management of groundwater venues at Badila requires various approaches throughout the lifetime of the Crystal field such as the data acquisition and remediation actions and prevention, under a permanent monitoring of the dynamic fluxes in the reservoirs.展开更多
基金the Natural Science Foundation of China(Grant Nos.42302314 and 52078427)the Open foundation of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2022K001).
文摘A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show that the peak shear strength and shear stiffness of bolted sandstone joints were significantly reduced after 12 dryewet cycles.The decrease in the shear strength of rough joints is more significant than that of flat joints.Due to the decrease in the strength of the surrounding rock,the deformation characteristics of the bolts are significantly affected by the number of dryewet cycles performed.With an increase in the number of dryewet cycles,the plastic hinge length of the bolt gradually increases,resulting in an increase in the corresponding shear displacement when the bolt breaks.Compared with the tensileeshear failure mode of the bolts in flat joints,the tensileebending failure mode arises for bolts in rough joints.A shear curve model describing the whole process of bolted rock joints is established based on the deterioration of rock mechanical parameters caused by dry‒wet cycles.The model proposed considers the change in the friction angle of the joint surface with the shear displacement,which is applied to the derivation of the model by introducing the dynamic evolutionary friction angle parameter.The reasonably good agreement between a predicted curve and the corresponding experimental curve indicates that this method can effectively predict the shear strength of a bolted rock joint involving rough joint under dryewet cycling conditions.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52178373 and 51878657).
文摘The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.
基金This research work was financially supported by the National Natural Science Foundation of China(Grant Nos.52078182 and 41877255)the Tianjin Municipal Natural Science Foundation(Grant No.20JCYBJC00630).Their financial support is gratefully acknowledged.
文摘To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.
文摘Modem analytical models for anti-monopoly laws are a core element of the application of those laws. Since the Anti-Monopoly Law of the People's Republic of China was promulgated in 2008, law enforcement and judicial authorities have applied different analytical models, leading to divergent legal and regulatory outcomes as similar cases receive different verdicts. To select a suitable analytical model for China's Anti-Monopoly Law, we need to consider the possible contribution of both economic analysis and legal formalism and to learn from the mature systems and experience of foreign countries. It is also necessary to take into account such binding constraints as the current composition of China's anti-monopoly legal system, the ability of implementing agencies and the supply of economic analysis, in order to ensure complementarity between the analytical model chosen and the complexity of economic analysis and between the professionalism of implementing agencies and the cost of compliance for participants in economic activities. In terms of institutional design, the models should provide a considered explanation of the legislative aims of the law's provisions. It is necessary, therefore, to establish a processing model of behavioral classification that is based on China's national conditions, applies analytical models using normative comprehensive analysis, makes use of the distribution rule of burden of proof, improves supporting systems related to analytical models and enhances the ability of public authorities to implement the law.
文摘Congestion is one of the well-studied problems in computer networks,which occurs when the request for network resources exceeds the buffer capacity.Many active queue management techniques such as BLUE and RED have been proposed in the literature to control congestions in early stages.In this paper,we propose two discrete-time queueing network analytical models to drop the arrival packets in preliminary stages when the network becomes congested.The first model is based on Lambda Decreasing and it drops packets from a probability value to another higher value according to the buffer length.Whereas the second proposed model drops packets linearly based on the current queue length.We compare the performance of both our models with the original BLUE in order to decide which of these methods offers better quality of service.The comparison is done in terms of packet dropping probability,average queue length,throughput ratio,average queueing delay,and packet loss rate.
文摘Constitutive models aimed at predicting the mechanical response of lead-core bearing devices for passive seismic isolation are discussed in this paper. The study is focused on single-degree-of-freedom models which provide a relation between the shear displacement (shear strain) and the shear force (shear stress) in elastomeric and lad-core rubber bearings. Classical Bouc-Wen model along with a numerical procedure for identification of the model constants is described. Alternatively, a constitutive relation introducing a damage variable aimed at assessing the material degradation is also considered.
基金the National Natural Science Foundation of China (Grant No. 50379026).
文摘There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study the dynamic responses with hydrodynamic influence coefficients for different water depths. The beam theory and potential theory are introduced to produce the models. The hydrodynamic coefficients and dynamic responses of bridges are evaluated by the boundary element method and by the Galerkin method of weighted residuals, respectively. Considering causal relationship between the frequencies of the oscillation of floating bridges and the added mass coefficients, an iteration method is introduced to compute hydrodynamic frequencies. The results indicate that water depth has little influence upon the dynamic responses of both types of floating bridges, so that the effect of water depth can be neglected during the course of designing floating bridges.
文摘Congestion control is among primary topics in computer network in which random early detection(RED)method is one of its common techniques.Nevertheless,RED suffers from drawbacks in particular when its“average queue length”is set below the buffer’s“minimum threshold”position which makes the router buffer quickly overflow.To deal with this issue,this paper proposes two discrete-time queue analytical models that aim to utilize an instant queue length parameter as a congestion measure.This assigns mean queue length(mql)and average queueing delay smaller values than those for RED and eventually reduces buffers overflow.A comparison between RED and the proposed analytical models was conducted to identify the model that offers better performance.The proposed models outperform the classic RED in regards to mql and average queueing delay measures when congestion exists.This work also compares one of the proposed models(RED-Linear)with another analytical model named threshold-based linear reduction of arrival rate(TLRAR).The results of the mql,average queueing delay and the probability of packet loss for TLRAR are deteriorated when heavy congestion occurs,whereas,the results of our RED-Linear were not impacted and this shows superiority of our model.
基金This work is sponsored by the National Natural Science Foundation of China(Nos.52105117&52105118).
文摘Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechanism analysis and fault feature extraction.However,in conventional investigations,this issue is not well and fully addressed from the perspective of theoretical analysis and physical derivation.In this study,an improved analytical model for time-varying displacement excitations(TVDEs)caused by surface defects is theoretically formulated.First and foremost,the physical mechanism for the effect of defect sizes on the physical process of rolling element-defect interaction is revealed.According to the physical interaction mechanism between the rolling element and different types of defects,the relationship between time-varying displacement pulse and defect sizes is further analytically derived.With the obtained time-varying displacement pulse,the dynamic model for the deep groove bearings considering the internal excitation caused by the surface defect is established.The nonlinear vibration responses and fault features induced by surface defects are analyzed using the proposed TVDE model.The results suggest that the presence of surface defects may result in the occurrence of the dual-impulse phenomenon,which can serve as indexes for surface-defect fault diagnosis.
文摘Waterflood-induced fractures,also known as self-induced fractures,spontaneously form at injection wells during waterflooding.These fractures propagate long distances through rock,allowing injected fluids to travel far away from a well,both within and outside the flooding layer.Essentially,the me-chanics of waterflood-induced fracture propagation is similar to that of hydraulic fractures,which are intentionally created for reservoir stimulation.Fracturing models developed for hydraulic fractures can also be applied to waterflood-induced fractures.However,waterflood-induced fractures are typically pumped with much larger volumes of water or brine and grow much longer in time.As a result,fluid leakoff from waterflood fractures into the formation is more extensive and two-dimensional(2D),a characteristic that is often ignored in a majority of modern fracturing simulators,making their appli-cation to waterflood fractures unreliable.In this work,we revisit the problem of leakoff for long-growing waterflood-induced fractures and develop a new analytical model for fluid leakoff that provides improved predictions of fracture geometry and can be easily implemented in fracturing simulators.We incorporate the developed solution into the classical Perkins-Kern-Nordgren(PKN)model of fracture growth,which shows that the choice of the Carter or a 2D leakoff model greatly impacts fracture ge-ometry at large time.The conducted parametric study shows while a toughness-dominated regime af-fects fracture evolution,most of fracture lifetime occurs in a viscosity-and-leakoff-dominated regime.We also develop an asymptotic solution for a leakoff profile in the limiting case of 2D leakoff domination(~~M and~~K).Finally,we study 3D fracture growth and out-of-zone injection with three layers and a complex structure of zones.The study shows that ignoring the 2D leakoff during simulation results in a significant overestimation of fracture geometry predictions.The present work,thus,plays an important role in improving waterflood fracture modelling,as it highlights the significance of 2D leakoff in waterflood-induced fractures and provides a reliable analytical model for fluid leakoff that can be incorporated into modern fracture simulators.
基金National Natural Science Foundation of China under Grant No.51978397。
文摘This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.
基金supported by the National Natural Science Foundation of China under Grant[52077027]Liaoning Province Science and Technology Major Project[No.2020JH1/10100020].
文摘In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.
基金funded by the Inner Mongolia Autonomous Region Science and Technology Program(2021GG0198)Shaanxi Science,Technology Department(No.2021ZDLSF05-01,2022SF-327)China Geological Survey(DD20190351,DD20221751).
文摘Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.
基金The Project(52174101)supported by the National Natural Science Foundation of ChinaThe Project(2023A1515011634)supported by Guangdong Basic and Applied Basic Research Foundation.
文摘Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts.
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.
基金Projects (09-QZ-2008, 24-TZ-2009) supported by the Free Research Fund of State Key Laboratory of Solidification Processing, ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to Universities, China+3 种基金Projects (51071127, 51134011) supported by the National Natural Science Foundation of ChinaProject (JC200801) supported by the Fundamental Research Fund of Northwestern Polytechnical University, ChinaProject (51125002) supported by the National Science Foundation for Distinguished Young Scholars, ChinaProject (2011CB610403) supported by the National Basic Research Program of China
文摘Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial transformation temperature and the accurate "temperature integral" approximations are incorporated to obtain an extended analytical model. Numerical approach demonstrated that the extended analytical model prediction for transformed fraction and transformation rate is in good agreement with the exact numerical calculation. The new model can describe more precisely the kinetic behavior than the original analytical model, especially for transformation with relatively high initial transformation temperature. The kinetic parameters obtained from the new model are more accurate and reasonable than those from the original analytical model.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51978336 and 11702117)the Science and Technology Plan Project of Department of Communications of Zhejiang Province(Grant No.2021051)Nantong City Social Livelihood Science and Technology Project(Grant No.MS22022067).
文摘The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.
文摘Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.
文摘The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon production and the management of fluxes particularly the groundwater venues. A comprehensive study is thus conducted to develop a dynamic and analytic model for diagnosing the production performances with a particular view on the management of groundwater venues. The three main concerned reservoirs subdivided on subunits evidence their proper characteristics. The porous media, their densities, the internal flows and the water injection techniques such as water flooding were thus adopted. The oil viscosity variability within the reservoirs creates different levels of mobility between water and oil, highlighting the challenges of water management. The material balance model and the behavior of the well analysis were taken in consideration within the identified aquifer, emphasizing the importance of keeping the pressure through injection. The control of water productions, the management of the reservoir, the well strategical position and the specific completions lead to the model functioning. In addition, the CO log and the Pulsed Neutron indicate their limitations as a result of the water salinity and the porosity of the aquifer. The management of groundwater venues at Badila requires various approaches throughout the lifetime of the Crystal field such as the data acquisition and remediation actions and prevention, under a permanent monitoring of the dynamic fluxes in the reservoirs.