The biosynthesis of nanoparticles has been proposed as a cost effective and environmental friendly alternative to chemical and physical methods. Plant mediated synthesis of nanoparticles is a green chemistry approach ...The biosynthesis of nanoparticles has been proposed as a cost effective and environmental friendly alternative to chemical and physical methods. Plant mediated synthesis of nanoparticles is a green chemistry approach that intercom nects nanotechnology and plant biotechnology. In the present study, synthesis of silver nanoparticles (AgNPs) or (Green-Silver) has been demonstrated using extracts of Ananas comosus reducing aqueous silver nitrate. The AgNPs were characterized by Ultraviolet-Visible (UV-vis) Spectrometer, Energy Dispersive X-ray Analysis (EDAX), Selected Area Diffraction Pattern (SAED) and High Resolution Transmission Electron Microscopy (HRTEM). TEM micrographs showed spherical particles with an average size of 12 nm. The XRD pattern showed the characteristic Bragg peaks of (111), (200), (220) and (311) facets of the face center cubic (fcc) silver nanoparticles and confirmed that these nanoparticles are crystalline in nature. The different types of antioxidants presented in the pineapple juice synergistically reduce the Ag metal ions, as each antioxidant is unique in terms of its structure and antioxidant function. The re- action process was simple for formation of silver nanoparticles and AgNPs presented in the aqueous medium were quite stable, even up to 4 months of incubation. This work proved the capability of using biomaterial towards the synthesis of silver nanoparticle, by adopting the principles of green chemistry.展开更多
This paper focuses on the study of the physical, biochemical, structural, and thermal properties of plant fibres of <i>Rhecktophyllum camerunense</i> (RC), <i>Neuropeltis acuminatas</i> (NA) an...This paper focuses on the study of the physical, biochemical, structural, and thermal properties of plant fibres of <i>Rhecktophyllum camerunense</i> (RC), <i>Neuropeltis acuminatas</i> (NA) and <i>Ananas</i> <i>comosus</i> (AC) from the equatorial region of Cameroon. The traditional use of these fibres inspired researchers to investigated their properties. This study aims at improving the state of knowledge with a view to diversifying applications. The fibres are extracted by retting. Then, their apparent density was measured following the ASTM D792 standard and their water moisture absorption and moisture content were also evaluated. Their molecular structure was studied by ATR-FTIR spectroscopy. A quantitative analysis of the biochemical composition was performed according to the analytical technique for the pulp and paper industry (TAPPI). A TGA/DSC analysis was also performed. The results reveal that the AC, NA and RC fibres have densities of 1.26 ± 1.06, 0.846 ± 0.13 and 0.757 ± 0.08 g·cm<sup>-3</sup> respectively. They are also hydrophilic with a water absorption rate of 188.64 ± 11.94%, 276.16% ± 8.07% and 198.17% ± 20%. They have a moisture content of 12.21%, 10.36% and 9.37%. The studied fibres exhibit functional groups that are related to the presence of hemicellulose, pectin, lignin and cellulose. The cellulose crystallinity index was found to be 67.99%, 46.5% and 59.72% respectively. The fibres under study have the following chemical composition: an extractive content of 3.07%, 14.77% and 8.74%;a pectin content of 4.15%, 7.69% and 3.45%;a hemicellulose content of 4.90%, 15.33% and 7.42%;a cellulose content of 68.11%, 36.08% and 65.15%;a lignin content of 12.01%, 25.15% and 16.2%;and an ash content of 0.27%, 1.53% and 0.47% respectively. The thermal transitions observed on the thermograms correlate with the TAPPI chemical composition. It is observed that these fibres are thermally stable up to temperatures of 200°C, 220°C and 285°C. These results make it possible to envisage uses similar to those of sisal, hemp and flax fibres.展开更多
The present work initially identified the design parameters of a temporary immersion bioreactor to later scale it to a complete system for the </span><i><span style="font-family:Verdana;">i...The present work initially identified the design parameters of a temporary immersion bioreactor to later scale it to a complete system for the </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> multiplication of </span><i><span style="font-family:Verdana;">Ananas comosus</span></i><span style="font-family:Verdana;"> var. </span><span style="font-family:Verdana;">Trujillana</span><span style="font-family:Verdana;"> Red. Thus, a low-cost pneumatic temporary immersion bioreactor system was designed and built with 24 tanks of 2 L each. The automation of the system was designed and implemented by means of a timer circuit whose design parameters were: duration of the propagation process, which depends on the multiplication period of the crop and is an open variable, which means that the operator decides when to turn off the system;the duration of each dive, which for reasons of </span><span style="font-family:Verdana;">complexity</span><span style="font-family:Verdana;"> of the algorithm was standardized as one minute;immersion frequency, which was programmed for intervals of 1, 2, 3, 4, 5, 6, 7, 8 hours respectively and duration of aeration, which from a test run times of 0.20 were chosen, 30, 40, 50, 60, 70, and 80 seconds that correspond to the time of delivery of compressed air;additionally, the multiplication rate of </span><i><span style="font-family:Verdana;">Ananas comosus</span></i><span style="font-family:Verdana;"> var. </span><span style="font-family:Verdana;">Trujillana</span><span style="font-family:Verdana;"> Red in the immersion system which was 6.5 times per propagative unit inoculated in thirty days.展开更多
Ananas comosus var.bracteatus is an important ornamental plant because of its green/white chimeric leaves.The accumulation of anthocyanin makes the leaf turn to red especially in the marginal part.However,the red fade...Ananas comosus var.bracteatus is an important ornamental plant because of its green/white chimeric leaves.The accumulation of anthocyanin makes the leaf turn to red especially in the marginal part.However,the red fades away in summer and winter.Light intensity is one of the most important factors affecting leaf color along the seasons.In order to understand the effects of light intensity on the growth and coloration of the chimeric leaves,Ananas comosus var.bracteatus was grown under full sunlight,50%shade and 75%shade for 75 days to evaluate the concentration of pigments,the color parameters(values L^(*),a^(*),b^(*))and the morpho-anatomical variations of chimeric leaves.The results showed that a high irradiance was beneficial to keep the chimeric leaves red.However,prolonged exposure to high irradiance caused a damage,some of the leaves wrinkled and even burned.Shading instead decreased the concentration of anthocyanin and increased the concentration of chlorophyll,especially in the white marginal part of the leaves.Numerous chloroplasts were observed in the mesophyll cells of the white marginal part of the chimeric leaves under shading for 75 days.The increase in chlorophyll concentration resulted in a better growth of plants.In order to balance the growth and coloration of the leaves,approximately 50%shade is suggested to be the optimum light irradiance condition for Ananas comosus var.bracteatus in summer.展开更多
The present study aim was to assess the preventive effects of Ananas comosus juice consumption on the risk factors of obesity in female Wistar rats. 108 rats were tested for 90 days. After randomization, they were sha...The present study aim was to assess the preventive effects of Ananas comosus juice consumption on the risk factors of obesity in female Wistar rats. 108 rats were tested for 90 days. After randomization, they were shared out into six groups including four experimental groups (GTc, GPlp, GEns and GBrS) and two control groups (<img src="Edit_22b6d494-c259-4132-9806-9c1843ee2402.png" width="15" height="3" align="right" alt="" /><img src="Edit_f761aee0-3be8-44aa-ba0a-865dcc4c7881.png" width="80" height="22" alt="" /><span style="font-family:Verdana;">). The control group consumed 1.20 ml of distilled water, the experimental rats received in oral, 1.20 ml of drinks made from the different parts of Ananas comosus fruit. The measurements of morphometric and biochemical parameters were carried out on Day 0 (D0), Day 30 (D30), Day 60 (D60) and Day 90 (D90). The analysis showed that compared to the positive control rats, the consumption of the various drinks slowed down significantly (P < 0.001);the evolution of the morphometric and biochemical parameters likely to induce obesity in experimental rats which have an increase in a protective factor (HDL;P < 0.001). These results indicate that consumption of different parts of Ananas comosus’s juices had preventive effects on risk factors related to obesity. Moreover, the fruit juice treatment has been found to be more effective.</span>展开更多
Processing pineapple industry produces huge amounts of waste thus contributing to worsen the global environmental problem. Valorising pineapple waste through further processing until it is transformed into valuable pr...Processing pineapple industry produces huge amounts of waste thus contributing to worsen the global environmental problem. Valorising pineapple waste through further processing until it is transformed into valuable products using environmentally friendly techniques is both, a challenge, and an opportunity. The aim of this review is to characterize and highlight the phytochemical constituents of pineapple peel, their biological activity, and to evaluate the current state-of-art for the utilization of pineapple waste from the processing industry for obtaining pharmaceuticals, food, and beverages, biocombustibles, biodegradable fibers, and other different usage. Pineapple residues are rich in many bioactive compounds such as ferulic acid, vitamin A and C as antioxidant, and containing alkaloids, flavonoids, saponins, tannins, cardiac glycoside, steroids, triterpenoids and phytosterols may provide a good source of several beneficial properties, as well as bromelain that showed significant anticancer activity. Also, pineapple processing residues contain important volatile compounds used as aroma enhancing products and have high potential to produce value-added natural essences. Pineapple peels can be used as nonpharmacological therapeutical in the form of processed food and instant drinks;its potent natural antimicrobial properties may be applied for food conservation and as potential leads to discover new drugs to control some infectious microbial. Pineapple waste is a promising source of metabolites for therapeutics, functional foods, and cosmeceutical applications.展开更多
Women are more likely than men to develop cancer of the breast.Most breast cancer drugs are highly toxic,and treatment can cause side effects.It is imperative to find safe alternative medicines in the pursuit of a cur...Women are more likely than men to develop cancer of the breast.Most breast cancer drugs are highly toxic,and treatment can cause side effects.It is imperative to find safe alternative medicines in the pursuit of a cure for breast cancer.An extract of pineapple contains cysteine proteases known as bromelains.In general,pineapples are regarded as safe foods.From the fruit,stem,and of pineapples,bromelain is produced by multiple endopeptidases.As well as reducing the growth of tumors locally,bromelain severely impaired the cytotoxicity of monocytes in the immune system in the fight against cancer.Specifically,we investigated pineapple’s possible mechanisms of action and its bioactive compounds in breast cancer.展开更多
文摘The biosynthesis of nanoparticles has been proposed as a cost effective and environmental friendly alternative to chemical and physical methods. Plant mediated synthesis of nanoparticles is a green chemistry approach that intercom nects nanotechnology and plant biotechnology. In the present study, synthesis of silver nanoparticles (AgNPs) or (Green-Silver) has been demonstrated using extracts of Ananas comosus reducing aqueous silver nitrate. The AgNPs were characterized by Ultraviolet-Visible (UV-vis) Spectrometer, Energy Dispersive X-ray Analysis (EDAX), Selected Area Diffraction Pattern (SAED) and High Resolution Transmission Electron Microscopy (HRTEM). TEM micrographs showed spherical particles with an average size of 12 nm. The XRD pattern showed the characteristic Bragg peaks of (111), (200), (220) and (311) facets of the face center cubic (fcc) silver nanoparticles and confirmed that these nanoparticles are crystalline in nature. The different types of antioxidants presented in the pineapple juice synergistically reduce the Ag metal ions, as each antioxidant is unique in terms of its structure and antioxidant function. The re- action process was simple for formation of silver nanoparticles and AgNPs presented in the aqueous medium were quite stable, even up to 4 months of incubation. This work proved the capability of using biomaterial towards the synthesis of silver nanoparticle, by adopting the principles of green chemistry.
文摘This paper focuses on the study of the physical, biochemical, structural, and thermal properties of plant fibres of <i>Rhecktophyllum camerunense</i> (RC), <i>Neuropeltis acuminatas</i> (NA) and <i>Ananas</i> <i>comosus</i> (AC) from the equatorial region of Cameroon. The traditional use of these fibres inspired researchers to investigated their properties. This study aims at improving the state of knowledge with a view to diversifying applications. The fibres are extracted by retting. Then, their apparent density was measured following the ASTM D792 standard and their water moisture absorption and moisture content were also evaluated. Their molecular structure was studied by ATR-FTIR spectroscopy. A quantitative analysis of the biochemical composition was performed according to the analytical technique for the pulp and paper industry (TAPPI). A TGA/DSC analysis was also performed. The results reveal that the AC, NA and RC fibres have densities of 1.26 ± 1.06, 0.846 ± 0.13 and 0.757 ± 0.08 g·cm<sup>-3</sup> respectively. They are also hydrophilic with a water absorption rate of 188.64 ± 11.94%, 276.16% ± 8.07% and 198.17% ± 20%. They have a moisture content of 12.21%, 10.36% and 9.37%. The studied fibres exhibit functional groups that are related to the presence of hemicellulose, pectin, lignin and cellulose. The cellulose crystallinity index was found to be 67.99%, 46.5% and 59.72% respectively. The fibres under study have the following chemical composition: an extractive content of 3.07%, 14.77% and 8.74%;a pectin content of 4.15%, 7.69% and 3.45%;a hemicellulose content of 4.90%, 15.33% and 7.42%;a cellulose content of 68.11%, 36.08% and 65.15%;a lignin content of 12.01%, 25.15% and 16.2%;and an ash content of 0.27%, 1.53% and 0.47% respectively. The thermal transitions observed on the thermograms correlate with the TAPPI chemical composition. It is observed that these fibres are thermally stable up to temperatures of 200°C, 220°C and 285°C. These results make it possible to envisage uses similar to those of sisal, hemp and flax fibres.
文摘The present work initially identified the design parameters of a temporary immersion bioreactor to later scale it to a complete system for the </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> multiplication of </span><i><span style="font-family:Verdana;">Ananas comosus</span></i><span style="font-family:Verdana;"> var. </span><span style="font-family:Verdana;">Trujillana</span><span style="font-family:Verdana;"> Red. Thus, a low-cost pneumatic temporary immersion bioreactor system was designed and built with 24 tanks of 2 L each. The automation of the system was designed and implemented by means of a timer circuit whose design parameters were: duration of the propagation process, which depends on the multiplication period of the crop and is an open variable, which means that the operator decides when to turn off the system;the duration of each dive, which for reasons of </span><span style="font-family:Verdana;">complexity</span><span style="font-family:Verdana;"> of the algorithm was standardized as one minute;immersion frequency, which was programmed for intervals of 1, 2, 3, 4, 5, 6, 7, 8 hours respectively and duration of aeration, which from a test run times of 0.20 were chosen, 30, 40, 50, 60, 70, and 80 seconds that correspond to the time of delivery of compressed air;additionally, the multiplication rate of </span><i><span style="font-family:Verdana;">Ananas comosus</span></i><span style="font-family:Verdana;"> var. </span><span style="font-family:Verdana;">Trujillana</span><span style="font-family:Verdana;"> Red in the immersion system which was 6.5 times per propagative unit inoculated in thirty days.
基金This work was funded by the National Natural Science Foundation of China(Grant Nos.31971704,31770743).
文摘Ananas comosus var.bracteatus is an important ornamental plant because of its green/white chimeric leaves.The accumulation of anthocyanin makes the leaf turn to red especially in the marginal part.However,the red fades away in summer and winter.Light intensity is one of the most important factors affecting leaf color along the seasons.In order to understand the effects of light intensity on the growth and coloration of the chimeric leaves,Ananas comosus var.bracteatus was grown under full sunlight,50%shade and 75%shade for 75 days to evaluate the concentration of pigments,the color parameters(values L^(*),a^(*),b^(*))and the morpho-anatomical variations of chimeric leaves.The results showed that a high irradiance was beneficial to keep the chimeric leaves red.However,prolonged exposure to high irradiance caused a damage,some of the leaves wrinkled and even burned.Shading instead decreased the concentration of anthocyanin and increased the concentration of chlorophyll,especially in the white marginal part of the leaves.Numerous chloroplasts were observed in the mesophyll cells of the white marginal part of the chimeric leaves under shading for 75 days.The increase in chlorophyll concentration resulted in a better growth of plants.In order to balance the growth and coloration of the leaves,approximately 50%shade is suggested to be the optimum light irradiance condition for Ananas comosus var.bracteatus in summer.
文摘The present study aim was to assess the preventive effects of Ananas comosus juice consumption on the risk factors of obesity in female Wistar rats. 108 rats were tested for 90 days. After randomization, they were shared out into six groups including four experimental groups (GTc, GPlp, GEns and GBrS) and two control groups (<img src="Edit_22b6d494-c259-4132-9806-9c1843ee2402.png" width="15" height="3" align="right" alt="" /><img src="Edit_f761aee0-3be8-44aa-ba0a-865dcc4c7881.png" width="80" height="22" alt="" /><span style="font-family:Verdana;">). The control group consumed 1.20 ml of distilled water, the experimental rats received in oral, 1.20 ml of drinks made from the different parts of Ananas comosus fruit. The measurements of morphometric and biochemical parameters were carried out on Day 0 (D0), Day 30 (D30), Day 60 (D60) and Day 90 (D90). The analysis showed that compared to the positive control rats, the consumption of the various drinks slowed down significantly (P < 0.001);the evolution of the morphometric and biochemical parameters likely to induce obesity in experimental rats which have an increase in a protective factor (HDL;P < 0.001). These results indicate that consumption of different parts of Ananas comosus’s juices had preventive effects on risk factors related to obesity. Moreover, the fruit juice treatment has been found to be more effective.</span>
文摘Processing pineapple industry produces huge amounts of waste thus contributing to worsen the global environmental problem. Valorising pineapple waste through further processing until it is transformed into valuable products using environmentally friendly techniques is both, a challenge, and an opportunity. The aim of this review is to characterize and highlight the phytochemical constituents of pineapple peel, their biological activity, and to evaluate the current state-of-art for the utilization of pineapple waste from the processing industry for obtaining pharmaceuticals, food, and beverages, biocombustibles, biodegradable fibers, and other different usage. Pineapple residues are rich in many bioactive compounds such as ferulic acid, vitamin A and C as antioxidant, and containing alkaloids, flavonoids, saponins, tannins, cardiac glycoside, steroids, triterpenoids and phytosterols may provide a good source of several beneficial properties, as well as bromelain that showed significant anticancer activity. Also, pineapple processing residues contain important volatile compounds used as aroma enhancing products and have high potential to produce value-added natural essences. Pineapple peels can be used as nonpharmacological therapeutical in the form of processed food and instant drinks;its potent natural antimicrobial properties may be applied for food conservation and as potential leads to discover new drugs to control some infectious microbial. Pineapple waste is a promising source of metabolites for therapeutics, functional foods, and cosmeceutical applications.
文摘Women are more likely than men to develop cancer of the breast.Most breast cancer drugs are highly toxic,and treatment can cause side effects.It is imperative to find safe alternative medicines in the pursuit of a cure for breast cancer.An extract of pineapple contains cysteine proteases known as bromelains.In general,pineapples are regarded as safe foods.From the fruit,stem,and of pineapples,bromelain is produced by multiple endopeptidases.As well as reducing the growth of tumors locally,bromelain severely impaired the cytotoxicity of monocytes in the immune system in the fight against cancer.Specifically,we investigated pineapple’s possible mechanisms of action and its bioactive compounds in breast cancer.