Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence...Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence spectroscopy. Visible (-S00 nm) and near-infrared (NIR, -830 nm) emissions were monitored to give insight into the photoinduced charges of anatase and rutile in the junction, respectively, New fast photoluminescence decay components appeared in the visible emission of futile-phase dominated TiO2 and in the NIR emission of many mixed phase TiO2samples. The fast decays confirmed that the charge separation occurred at the phase junction. The visible emission intensity from the mixed phase TiO2 increased, revealing that charge transfer from rutile to anatase was the main pathway. The charge separation slowed the microsecond time scale photolumines- cence decay rate for charge carriers in both anatase and rutile. However, the millisecond decay of the charge carriers in anatase TiO2 was accelerated, while there was almost no change in the charge carrier dynamics of rutile TiO2. Thus, charge separation at the anatase/rutile phase junction caused an increase in the charge carrier concentration on a microsecond time scale, because of slower electron-hole recombination. The enhanced photocatalytic activity previously observed at ana- tase/rutile phase junctions is likely caused by the improved charge carrier dynamics we report here. These findings may contribute to the development of improved photocatalytic materials.展开更多
TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocata...TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocatalysts. The structural features of the catalysts were characterized by X-ray di raction, transmission electron microscopy, inductively cou-pled plasma atomic emission spectrum, and H2 Temperature-programmed reduction. The photocatalytic property was studied by the O2 evolution from water oxidation, which was examined with respect to the in uences of Ru contents as well as the oxidation and reduction treatments, suggesting the charge separation effect of the Ru species co-catalysts on di erent facets of TiO2 nanosheets. In contrast to Ru/TiO2 and RuO2/TiO2 with the single deposited co-catalyst, the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2 with dual co-catalysts achieved a much improved catalytic performance, in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.展开更多
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i...Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.展开更多
The impact of N-and X(X=S,Se,Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT).The optimized geometry shows that there is large lattic...The impact of N-and X(X=S,Se,Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT).The optimized geometry shows that there is large lattice expansion for the codoped anatase TiO2 due to large atomic radius of the codoped atom.The calculated substitution energies indicate that incorporation of X(X =S,Se,Te) into N-doped bulk TiO2 can not promote synergistic effect on N after substituting for Ti,whcreas it is bctter after substituting for O.According to the total density of states (DOS) and corresponding partial DOS (PDOS),it can be seen that substituting X(X =S,Se,Te) for O,N 2p orbital is strongly hybridized with impurity states (S 3p,Se 4p,Te 5p).After substituting X(X=S,Se,Te) for Ti,conduction band is mainly dominated by Ti 3d orbit and S 3p (Se 4p or Te 5p)-N 2p-Ti 3d hybridized states are formed.Based on Bader analysis,it can be indicated that the electron transfer is from N to X(X=S,Se,Te) if substituting X(X=S,Se,Te) for O,but it is opposite if substitute X(X=S,Se,Te) for Ti.展开更多
Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by...Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-visible diffuse spectroscopy. It was found that the crystallinity, grain size, and {001}/{101} ratio of the samples can be increased by raising the calcination temperature from 500 to 800℃. The higher crystallinity and {001}/{101} facet ratio resulted in an increase in both aqueous and gas-phase photocatalytic activities, by inhibiting the recombination and separation of electrons and holes. After selecting two TiO2 samples with high crystallinity and {001}/{101} ratio, Au nanoparticles were decorated on their surfaces, and the photocatalytic activity of the resulting samples under visible light illumination was studied. It was found that the visible light-induced photocatalytic activity increased by 2.6 and 4.8 times, respectively, upon Au decoration of the samples prepared by calcination of TiOF2 at 700 and 800℃.展开更多
Nanoporous anatase TiO2 crystalline particles coupled with Keggin or Wells-Dawson unit, H3PW12O40/TiO2 or H6P2W18O62/TiO2, were prepared at a low temperature (200℃ ) using sol-gel method combined with hydrothermal ...Nanoporous anatase TiO2 crystalline particles coupled with Keggin or Wells-Dawson unit, H3PW12O40/TiO2 or H6P2W18O62/TiO2, were prepared at a low temperature (200℃ ) using sol-gel method combined with hydrothermal treatment at programmed temperature. The as-prepared composites have uniform anatase phase, and they exhibit both micrand mesoporosities with pore sizes of 0.6 and 4.0 nm, respectively, and their average size is lower than 10 nm. Photocatalytic tests show the composites exhibit relatively higher photocatalytic activities to decompose the organocholorine pesticide hexachlorobenzene(HCB) than anatase TiO2, the starting polyoxotungstates, and EuEOa/TiO2 prepared by using sol-gel method, and this was attributed to ( 1 ) the synergistic effect of photoactive anatase TiO2 with the polyoxotungstate, and (2) the fascinating physical and chemical properties of the porous materials.展开更多
Formic acid photodegradation is one of the most important reactions in organic pollution control, and helps to improve the hydrogen generation efficiency in titanium dioxide catalyzed water photodecomposition. Based o...Formic acid photodegradation is one of the most important reactions in organic pollution control, and helps to improve the hydrogen generation efficiency in titanium dioxide catalyzed water photodecomposition. Based on density functional theory and Reax FF molecular dynamics, the adsorption, diffusion and activation of formic acid on the different anatase TiO(101),(001),(010) surfaces are investigated.The result shows that the adsorption of COOH on anatase TiOsurface shrinks the energy gap between the dehydrogenation intermediate COOH and HCOO. On the anatase TiO(101) surface, the formic acid breaks the O–H bond at the first step with activation energy 0.24 eV, and the consequent break of α-H become much easier with activation energy 0.77 eV. The dissociation of α-H is the determination step of the HCOOH decomposition.展开更多
Quasiparticle band structures of the defective anatase TiO2 bulk with O vacancy, Ti interstitial and H interstitial are investigated by the GW method within many-body Green's function theory. The computed direct band...Quasiparticle band structures of the defective anatase TiO2 bulk with O vacancy, Ti interstitial and H interstitial are investigated by the GW method within many-body Green's function theory. The computed direct band gap of the perfect anatase bulk is 4.3 eV, far larger than the experimental optical absorption edge (3.2 eV). We found that this can be ascribed to the inherent defects in anatase which drag the conduction band (CB) edge down. The occupied band-gap states induced by these defects locate close to the CB edge, exclud- ing the possible contribution of these bulk defects to the deep band-gap state below CB as observed in experiments.展开更多
FeTi_1-O_2(= 0.00,0.05,0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer,and acetic acid as the chemical reagent.Their stru...FeTi_1-O_2(= 0.00,0.05,0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer,and acetic acid as the chemical reagent.Their structural and optical analyses are studied to reveal their physicochemical properties.Using the x-ray diffractometer(XRD)analysis,the size of the nanoparticles(NPs) is found to be 18-32 nm,where the size of the NPs decreases down to 18 nm when Fe impurity of up to 10% is added,whereas their structure remains unchanged.The results also indicate that the structure of the NPs is tetragonal in the anatase phase.The Fourier transform infrared spectroscopy analysis suggests the presence of a vibration bond(Ti-O) in the sample.The photoluminescence analysis indicates that the diffusion of Fe^(3+) ions into the TiO_2 matrix results in a decreasing electron-hole recombination,and increases the photocatalytic properties,where the best efficiency appears at an impurity of10%.The UV-diffuse reflection spectroscopy analysis indicates that with the elevation of iron impurity,the band gap value decreases from 3.47 eV for the pure sample to 2.95 eV for the 10 mol% Fe-doped TiO_2 NPs.展开更多
Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were...Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were prepared through a three-step synthesis method, including hydrothermal treatment, H+ exchange, and annealing. The phase structures of the nanowires in the bulk and on the surface during the annealing process were monitored by XRD and UV-Raman spectroscopy, respectively. SEM and TEM results indicate that the TiO2(B) nanowires partially collapse and transform into anatase during the annealing process and the heterophase junction structure is formed simultaneously. On the basis of the phase structure together with morphology data, a phase-transformation mechanism was proposed. Photocatalytic activity was evaluated by hydrogen production and pollutant-degradation assays. The optimized structure of the photocatalyst contains 24% TiO2(B) in the bulk and 100% anatase on the surface. The charge-carrier behavior during the photocatalytic process was investigated by photocurrent, electrochemical impedance spectroscopy(EIS), and photoluminescence(PL) spectroscopy, which revealed that the heterophase-junction structure in the bulk was responsible for the highly efficient charge separation and transportation, etc.; the anatase on the surface took control of the high surface-reaction activity.展开更多
We report the anatase titanium dioxide (101) surface adsorption of sp3-hybridized gas molecules, including NH3, 1-12 0 and CH4, using first-principles plane-wave ultrasoft pseudopotential based on the density functi...We report the anatase titanium dioxide (101) surface adsorption of sp3-hybridized gas molecules, including NH3, 1-12 0 and CH4, using first-principles plane-wave ultrasoft pseudopotential based on the density functional theory. The results show that it is much easier for a surface with oxygen vacancies to adsorb gas molecules than it is for a surface without oxygen vacancies. The main factor affecting adsorption stability and energy is the polarizability of molecules, and adsorption is induced by surface oxygen vacancies of the negatively charged center. The analyses of state densities and charge population show that charge transfer occurs at the molecule surface upon adsorption and that the number of transferred charge reduces in the order of N, 0 and C. Moreover, the adsorption method is chemical adsorption, and adsorption stability decreases in the order of NH3, tt2 0 and CH4. Analyses of absorption and reflectance spectra reveal that after absorbed CH4 and H2 O, compared with the surface with oxygen vacancy, the optical properties of materials surface, including its absorption coefficients and reflectivity index, have slight changes, however, absorption coefficient and reflectivity would greatly increase after NH3 adsorption. These findings illustrate that anatase titanium dioxide (101) surface is extremely sensitive to NH3.展开更多
The chemistry of acetaldehyde (CH3CHO) adsorbed on the anatase TiO2(001)-(1×4) surface has been investigated by temperature-programmed desorption (TPD) method. Our experimental results provide the direct evidence...The chemistry of acetaldehyde (CH3CHO) adsorbed on the anatase TiO2(001)-(1×4) surface has been investigated by temperature-programmed desorption (TPD) method. Our experimental results provide the direct evidence that the perfect lattice sites on the anatase TiO2(001)-(1×4) surface are quite inert for the reaction of CH3CHO, but the reduced defect sites on the surface are active for the thermally driven reductive carbon-carbon coupling reactions of CH3CHO to produce 2-butanone and butene. We propose that the coupling reactions of CH3CHO on the anatase TiO2(001)-(1×4) surface should undergo through the adsorption of paired CH3CHO molecules at the reduced defect sites, since the existing reduced Ti pairs provide the suitable adsorption sites.展开更多
In this paper, the stable structure and the electronic and optical properties of nitric oxide (NO) adsorption on the anatase TiO2 (101) surface are studied using the plane-wave ultrasoft pseudopotential method, wh...In this paper, the stable structure and the electronic and optical properties of nitric oxide (NO) adsorption on the anatase TiO2 (101) surface are studied using the plane-wave ultrasoft pseudopotential method, which is based on the density functional theory. NO adsorption on the surface is weak when the outermost layer terminates on twofold coordinated oxygen atoms, but it is remarkably enhanced on the surface containing O vacancy defects. The higher the concentration of oxygen vacancy defects, the stronger the adsorption is. The adsorption energies are 3.4528 eV (N end adsorption), 2.6770 eV (O end adsorption), and 4.1437 eV (horizontal adsorption). The adsorption process is exothermic, resulting in a more stable adsorption structure. Furthermore, O vacancy defects on the TiO2 (101) surface significantly contribute to the absorption of visible light in a relatively low-energy region. A new absorption peak in the low-energy region, corresponding to an energy of 0.9 eV, is observed. However, the TiO2 (101) surface structure exhibits weak absorption in the low-energy region of visible light after NO adsorption.展开更多
Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a ...Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a fem- tosecond pulsed laser at wavelengths of 532 nm and 780 nm simultaneously. At 532 nm, when increasing excitation intensity, NLO absorption of TiO2 NPs transforms from saturable absorption to reverse-saturable absorption. However, NWs and NWAs exhibit the opposite change. At 780nm, all samples show reverse-saturable absorption, but have different sensitivities to excitation intensity. Due to the larger surface-to-volume ratio of NPs and less defects of NWAs by annealing, nonlinear optical absorption coet^icients follow the order NPs≥ NWs≥ NWAs. The results also show that these shape and annealing effects axe dominant at low excitation intensity, but do not exhibit at the high excitation intensity. The NLO refractive index of NPs shows a positive linear relationship with the excitation intensity, whereas NW and NWAs exhibit a negative linear relationship. The results could provide some foundational guidance to applications of anatase TiO2 in optoelectronic devices or other aspects.展开更多
A systematic study on geometry, electronic structure and vibrational properties of N-doped TiO2 anatase cluster, within the framework of the density functional theory, has been performed in this work. The calculations...A systematic study on geometry, electronic structure and vibrational properties of N-doped TiO2 anatase cluster, within the framework of the density functional theory, has been performed in this work. The calculations confirmed that the most structures in substitutional model consist of a two-coordinate bridge structure and a three-coordinate hollow structure. The calculated results can well explain the red shift in N-doped TiO2 observed in experiments. The study provides an illustration for the N-doped anatase from the viewpoint of chemical bonding theory.展开更多
We have exploited a green approach to prepare layered titanate Na2_xHxTi2Os-H20 nanosheet arrays on FFO substrate by hydrothermal hydrolysis of titanium(IV) isopropoxide (TRIP) with aids of Na2EDTA and TEOA as co-...We have exploited a green approach to prepare layered titanate Na2_xHxTi2Os-H20 nanosheet arrays on FFO substrate by hydrothermal hydrolysis of titanium(IV) isopropoxide (TRIP) with aids of Na2EDTA and TEOA as co-coordination agents, which were then treated by HNO3 to replace Na+ by H+, followed by a calcination at 450℃ to topotactically transform into anatase TiO2 nanosheet arrays. SEM, TEM, XRD, and Raman spectroscopy have been employed to characterize the nanosheet films. The TiO2 nanosheet arrays were further applied as electron transport materials of CH3NH3PbI3 perovskite solar cells, achieving power conversion efficiency of 6.99%.展开更多
A sample of sulfated anatase TiO2 with high‐energy(001)facets(TiO2‐001)was prepared by a simple one‐step hydrothermal route using SO42-as a morphology‐controlling agent.After doping ceria,Ce/TiO2‐001 was used as ...A sample of sulfated anatase TiO2 with high‐energy(001)facets(TiO2‐001)was prepared by a simple one‐step hydrothermal route using SO42-as a morphology‐controlling agent.After doping ceria,Ce/TiO2‐001 was used as the catalyst for selective catalytic reduction(SCR)of NO with NH3.Compared with Ce/P25(Degussa P25 TiO2)and Ce/P25‐S(sulfated P25)catalysts,Ce/TiO2‐001 was more suitable for medium‐and high‐temperature SCR of NO due to the high surface area,sulfation,and the excellent properties of the active‐energy(001)facets.All of these facilitated the generation of abundant acidity,chemisorbed oxygen,and activated NOx‐adsorption species,which were the important factors for the SCR reaction.展开更多
Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and ...Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and then TiO2 thin film is soaked in the dye N-719 more than 12 h to prepare the photoelectrode device. The TiO2 nanoparticles produced by electric-discharge-nanofluid-process have premium anatase crystal property, and its diameter can be controlled within a range of 20-50 nm. The surface energy zeta potential of nanofluid is from -22 mV to -28.8 mV, it is a stable particle suspension in the deionized water. A trace of surfactant Triton X-100 put upon the surface of ITO glass can produce a uniform and dense TiO2 thin film and heating up the spin platform to 200 oC is able to eliminate mixed surfac-tant. Self-made TiO2 film presents excellent dye absorption performance and even doesn't need heat treatment procedure to enhance essential property. Results of energy analysis show the thicker film structure will increase the short-circuit current density that causes higher conversion efficiency. But, as the film structure is large and thick, both the open-circuit voltage and fill factor will decline gradually to lead bad efficiency of dye-sensitized solar cell.展开更多
A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination ...A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology. Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0-4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nano-composite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity.展开更多
基金supported by the National Natural Science Foundation of China (21203185, 21373209)the National Basic Research Program of China (2014CB239400)
文摘Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence spectroscopy. Visible (-S00 nm) and near-infrared (NIR, -830 nm) emissions were monitored to give insight into the photoinduced charges of anatase and rutile in the junction, respectively, New fast photoluminescence decay components appeared in the visible emission of futile-phase dominated TiO2 and in the NIR emission of many mixed phase TiO2samples. The fast decays confirmed that the charge separation occurred at the phase junction. The visible emission intensity from the mixed phase TiO2 increased, revealing that charge transfer from rutile to anatase was the main pathway. The charge separation slowed the microsecond time scale photolumines- cence decay rate for charge carriers in both anatase and rutile. However, the millisecond decay of the charge carriers in anatase TiO2 was accelerated, while there was almost no change in the charge carrier dynamics of rutile TiO2. Thus, charge separation at the anatase/rutile phase junction caused an increase in the charge carrier concentration on a microsecond time scale, because of slower electron-hole recombination. The enhanced photocatalytic activity previously observed at ana- tase/rutile phase junctions is likely caused by the improved charge carrier dynamics we report here. These findings may contribute to the development of improved photocatalytic materials.
文摘TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocatalysts. The structural features of the catalysts were characterized by X-ray di raction, transmission electron microscopy, inductively cou-pled plasma atomic emission spectrum, and H2 Temperature-programmed reduction. The photocatalytic property was studied by the O2 evolution from water oxidation, which was examined with respect to the in uences of Ru contents as well as the oxidation and reduction treatments, suggesting the charge separation effect of the Ru species co-catalysts on di erent facets of TiO2 nanosheets. In contrast to Ru/TiO2 and RuO2/TiO2 with the single deposited co-catalyst, the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2 with dual co-catalysts achieved a much improved catalytic performance, in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.11034006, No.21273208, and No.21473168), the Anhui Provincial Natural Sci- ence Foundation (No.1408085QB26), the hmdamental Research Funds for the Central Universities, the China Postdoctoral Science Foundation (No.2012M511409), and the Supercomputing Center of Chinese Academy of Sciences, Shanghai and USTC Supercomputer Cen- ters.
文摘Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.
基金Natural Science Foundation of Shanxi Province(No.2009011014)
文摘The impact of N-and X(X=S,Se,Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT).The optimized geometry shows that there is large lattice expansion for the codoped anatase TiO2 due to large atomic radius of the codoped atom.The calculated substitution energies indicate that incorporation of X(X =S,Se,Te) into N-doped bulk TiO2 can not promote synergistic effect on N after substituting for Ti,whcreas it is bctter after substituting for O.According to the total density of states (DOS) and corresponding partial DOS (PDOS),it can be seen that substituting X(X =S,Se,Te) for O,N 2p orbital is strongly hybridized with impurity states (S 3p,Se 4p,Te 5p).After substituting X(X=S,Se,Te) for Ti,conduction band is mainly dominated by Ti 3d orbit and S 3p (Se 4p or Te 5p)-N 2p-Ti 3d hybridized states are formed.Based on Bader analysis,it can be indicated that the electron transfer is from N to X(X=S,Se,Te) if substituting X(X=S,Se,Te) for O,but it is opposite if substitute X(X=S,Se,Te) for Ti.
基金supported by the National Natural Science Foundation of China(51772230,51461135004)the Hubei Foreign Science and Technology Cooperation Project(2017AHB059)the Japan Society for the Promotion of Science(JSPS)for an Invitational Fellowship for Foreign Researchers(L16531)~~
文摘Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-visible diffuse spectroscopy. It was found that the crystallinity, grain size, and {001}/{101} ratio of the samples can be increased by raising the calcination temperature from 500 to 800℃. The higher crystallinity and {001}/{101} facet ratio resulted in an increase in both aqueous and gas-phase photocatalytic activities, by inhibiting the recombination and separation of electrons and holes. After selecting two TiO2 samples with high crystallinity and {001}/{101} ratio, Au nanoparticles were decorated on their surfaces, and the photocatalytic activity of the resulting samples under visible light illumination was studied. It was found that the visible light-induced photocatalytic activity increased by 2.6 and 4.8 times, respectively, upon Au decoration of the samples prepared by calcination of TiOF2 at 700 and 800℃.
基金Project supported by the Natural Science Fund Council of Heilongjiang Province (B200608)
文摘Nanoporous anatase TiO2 crystalline particles coupled with Keggin or Wells-Dawson unit, H3PW12O40/TiO2 or H6P2W18O62/TiO2, were prepared at a low temperature (200℃ ) using sol-gel method combined with hydrothermal treatment at programmed temperature. The as-prepared composites have uniform anatase phase, and they exhibit both micrand mesoporosities with pore sizes of 0.6 and 4.0 nm, respectively, and their average size is lower than 10 nm. Photocatalytic tests show the composites exhibit relatively higher photocatalytic activities to decompose the organocholorine pesticide hexachlorobenzene(HCB) than anatase TiO2, the starting polyoxotungstates, and EuEOa/TiO2 prepared by using sol-gel method, and this was attributed to ( 1 ) the synergistic effect of photoactive anatase TiO2 with the polyoxotungstate, and (2) the fascinating physical and chemical properties of the porous materials.
基金supported by the National Natural Science Foundation of China(NSFC-2117622)
文摘Formic acid photodegradation is one of the most important reactions in organic pollution control, and helps to improve the hydrogen generation efficiency in titanium dioxide catalyzed water photodecomposition. Based on density functional theory and Reax FF molecular dynamics, the adsorption, diffusion and activation of formic acid on the different anatase TiO(101),(001),(010) surfaces are investigated.The result shows that the adsorption of COOH on anatase TiOsurface shrinks the energy gap between the dehydrogenation intermediate COOH and HCOO. On the anatase TiO(101) surface, the formic acid breaks the O–H bond at the first step with activation energy 0.24 eV, and the consequent break of α-H become much easier with activation energy 0.77 eV. The dissociation of α-H is the determination step of the HCOOH decomposition.
文摘Quasiparticle band structures of the defective anatase TiO2 bulk with O vacancy, Ti interstitial and H interstitial are investigated by the GW method within many-body Green's function theory. The computed direct band gap of the perfect anatase bulk is 4.3 eV, far larger than the experimental optical absorption edge (3.2 eV). We found that this can be ascribed to the inherent defects in anatase which drag the conduction band (CB) edge down. The occupied band-gap states induced by these defects locate close to the CB edge, exclud- ing the possible contribution of these bulk defects to the deep band-gap state below CB as observed in experiments.
基金the National Natural Science Foundation of China,the Program for New Century Excellent Talents in University,the National Science Foundation Project of CQ CSTC,the Fundamental Research Funds for the Central Universities
文摘FeTi_1-O_2(= 0.00,0.05,0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer,and acetic acid as the chemical reagent.Their structural and optical analyses are studied to reveal their physicochemical properties.Using the x-ray diffractometer(XRD)analysis,the size of the nanoparticles(NPs) is found to be 18-32 nm,where the size of the NPs decreases down to 18 nm when Fe impurity of up to 10% is added,whereas their structure remains unchanged.The results also indicate that the structure of the NPs is tetragonal in the anatase phase.The Fourier transform infrared spectroscopy analysis suggests the presence of a vibration bond(Ti-O) in the sample.The photoluminescence analysis indicates that the diffusion of Fe^(3+) ions into the TiO_2 matrix results in a decreasing electron-hole recombination,and increases the photocatalytic properties,where the best efficiency appears at an impurity of10%.The UV-diffuse reflection spectroscopy analysis indicates that with the elevation of iron impurity,the band gap value decreases from 3.47 eV for the pure sample to 2.95 eV for the 10 mol% Fe-doped TiO_2 NPs.
基金supported by the National Natural Science Foundation of China(21603134)Young Talent Fund of University Association for Science and Technology in Shaanxi,China(20150104)+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ2023)the Fundamental Research Funds for the Central Universities(GK201603032)~~
文摘Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were prepared through a three-step synthesis method, including hydrothermal treatment, H+ exchange, and annealing. The phase structures of the nanowires in the bulk and on the surface during the annealing process were monitored by XRD and UV-Raman spectroscopy, respectively. SEM and TEM results indicate that the TiO2(B) nanowires partially collapse and transform into anatase during the annealing process and the heterophase junction structure is formed simultaneously. On the basis of the phase structure together with morphology data, a phase-transformation mechanism was proposed. Photocatalytic activity was evaluated by hydrogen production and pollutant-degradation assays. The optimized structure of the photocatalyst contains 24% TiO2(B) in the bulk and 100% anatase on the surface. The charge-carrier behavior during the photocatalytic process was investigated by photocurrent, electrochemical impedance spectroscopy(EIS), and photoluminescence(PL) spectroscopy, which revealed that the heterophase-junction structure in the bulk was responsible for the highly efficient charge separation and transportation, etc.; the anatase on the surface took control of the high surface-reaction activity.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274128 and 61106129the Natural Science Foundation of Chongqing under Grant No CSTC2013JCYJA0731the Scientific Talent Training Foundation of Chongqing under Grant No CSTC2013KJRC-QNRC0080
文摘We report the anatase titanium dioxide (101) surface adsorption of sp3-hybridized gas molecules, including NH3, 1-12 0 and CH4, using first-principles plane-wave ultrasoft pseudopotential based on the density functional theory. The results show that it is much easier for a surface with oxygen vacancies to adsorb gas molecules than it is for a surface without oxygen vacancies. The main factor affecting adsorption stability and energy is the polarizability of molecules, and adsorption is induced by surface oxygen vacancies of the negatively charged center. The analyses of state densities and charge population show that charge transfer occurs at the molecule surface upon adsorption and that the number of transferred charge reduces in the order of N, 0 and C. Moreover, the adsorption method is chemical adsorption, and adsorption stability decreases in the order of NH3, tt2 0 and CH4. Analyses of absorption and reflectance spectra reveal that after absorbed CH4 and H2 O, compared with the surface with oxygen vacancy, the optical properties of materials surface, including its absorption coefficients and reflectivity index, have slight changes, however, absorption coefficient and reflectivity would greatly increase after NH3 adsorption. These findings illustrate that anatase titanium dioxide (101) surface is extremely sensitive to NH3.
基金supported by the Ministry of Science and Technology of China (No.2016YFA0200603)the National Natural Science Foundation of China (No.91421313 and No.21573207)Anhui Initiative in Quantum Information Technologies (AHY090300)
文摘The chemistry of acetaldehyde (CH3CHO) adsorbed on the anatase TiO2(001)-(1×4) surface has been investigated by temperature-programmed desorption (TPD) method. Our experimental results provide the direct evidence that the perfect lattice sites on the anatase TiO2(001)-(1×4) surface are quite inert for the reaction of CH3CHO, but the reduced defect sites on the surface are active for the thermally driven reductive carbon-carbon coupling reactions of CH3CHO to produce 2-butanone and butene. We propose that the coupling reactions of CH3CHO on the anatase TiO2(001)-(1×4) surface should undergo through the adsorption of paired CH3CHO molecules at the reduced defect sites, since the existing reduced Ti pairs provide the suitable adsorption sites.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61106129 and 61274128)
文摘In this paper, the stable structure and the electronic and optical properties of nitric oxide (NO) adsorption on the anatase TiO2 (101) surface are studied using the plane-wave ultrasoft pseudopotential method, which is based on the density functional theory. NO adsorption on the surface is weak when the outermost layer terminates on twofold coordinated oxygen atoms, but it is remarkably enhanced on the surface containing O vacancy defects. The higher the concentration of oxygen vacancy defects, the stronger the adsorption is. The adsorption energies are 3.4528 eV (N end adsorption), 2.6770 eV (O end adsorption), and 4.1437 eV (horizontal adsorption). The adsorption process is exothermic, resulting in a more stable adsorption structure. Furthermore, O vacancy defects on the TiO2 (101) surface significantly contribute to the absorption of visible light in a relatively low-energy region. A new absorption peak in the low-energy region, corresponding to an energy of 0.9 eV, is observed. However, the TiO2 (101) surface structure exhibits weak absorption in the low-energy region of visible light after NO adsorption.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404410 and 11504105
文摘Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a fem- tosecond pulsed laser at wavelengths of 532 nm and 780 nm simultaneously. At 532 nm, when increasing excitation intensity, NLO absorption of TiO2 NPs transforms from saturable absorption to reverse-saturable absorption. However, NWs and NWAs exhibit the opposite change. At 780nm, all samples show reverse-saturable absorption, but have different sensitivities to excitation intensity. Due to the larger surface-to-volume ratio of NPs and less defects of NWAs by annealing, nonlinear optical absorption coet^icients follow the order NPs≥ NWs≥ NWAs. The results also show that these shape and annealing effects axe dominant at low excitation intensity, but do not exhibit at the high excitation intensity. The NLO refractive index of NPs shows a positive linear relationship with the excitation intensity, whereas NW and NWAs exhibit a negative linear relationship. The results could provide some foundational guidance to applications of anatase TiO2 in optoelectronic devices or other aspects.
基金Supported by the National Natural Science Foundation of China (No. 20503021)National Basic Research Program of China (2007CB815301)
文摘A systematic study on geometry, electronic structure and vibrational properties of N-doped TiO2 anatase cluster, within the framework of the density functional theory, has been performed in this work. The calculations confirmed that the most structures in substitutional model consist of a two-coordinate bridge structure and a three-coordinate hollow structure. The calculated results can well explain the red shift in N-doped TiO2 observed in experiments. The study provides an illustration for the N-doped anatase from the viewpoint of chemical bonding theory.
基金financial support from "Hundred Talents Program" of the Chinese Academy of Sciences
文摘We have exploited a green approach to prepare layered titanate Na2_xHxTi2Os-H20 nanosheet arrays on FFO substrate by hydrothermal hydrolysis of titanium(IV) isopropoxide (TRIP) with aids of Na2EDTA and TEOA as co-coordination agents, which were then treated by HNO3 to replace Na+ by H+, followed by a calcination at 450℃ to topotactically transform into anatase TiO2 nanosheet arrays. SEM, TEM, XRD, and Raman spectroscopy have been employed to characterize the nanosheet films. The TiO2 nanosheet arrays were further applied as electron transport materials of CH3NH3PbI3 perovskite solar cells, achieving power conversion efficiency of 6.99%.
基金supported by the National Key R&D Program of China(2016YFC0204100)the Zhejiang Provincial "151" Talents Program+1 种基金the Program for Zhejiang Leading Team of S&T Innovation(2013TD07)the Changjiang Scholar Incentive Program(2009)~~
文摘A sample of sulfated anatase TiO2 with high‐energy(001)facets(TiO2‐001)was prepared by a simple one‐step hydrothermal route using SO42-as a morphology‐controlling agent.After doping ceria,Ce/TiO2‐001 was used as the catalyst for selective catalytic reduction(SCR)of NO with NH3.Compared with Ce/P25(Degussa P25 TiO2)and Ce/P25‐S(sulfated P25)catalysts,Ce/TiO2‐001 was more suitable for medium‐and high‐temperature SCR of NO due to the high surface area,sulfation,and the excellent properties of the active‐energy(001)facets.All of these facilitated the generation of abundant acidity,chemisorbed oxygen,and activated NOx‐adsorption species,which were the important factors for the SCR reaction.
文摘Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and then TiO2 thin film is soaked in the dye N-719 more than 12 h to prepare the photoelectrode device. The TiO2 nanoparticles produced by electric-discharge-nanofluid-process have premium anatase crystal property, and its diameter can be controlled within a range of 20-50 nm. The surface energy zeta potential of nanofluid is from -22 mV to -28.8 mV, it is a stable particle suspension in the deionized water. A trace of surfactant Triton X-100 put upon the surface of ITO glass can produce a uniform and dense TiO2 thin film and heating up the spin platform to 200 oC is able to eliminate mixed surfac-tant. Self-made TiO2 film presents excellent dye absorption performance and even doesn't need heat treatment procedure to enhance essential property. Results of energy analysis show the thicker film structure will increase the short-circuit current density that causes higher conversion efficiency. But, as the film structure is large and thick, both the open-circuit voltage and fill factor will decline gradually to lead bad efficiency of dye-sensitized solar cell.
基金The authors thank the National Natural Scir nce Foun-dation of China(No.20076004)the National Development Project of High Technology(No.2001AA322030)the Doctoral Program of Higher Education(No.2000001005)for the financial support of this project.
文摘A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology. Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0-4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nano-composite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity.