A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contamin...A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contaminated with As,Cd and Pb.The results show that giant reed rapidly grows with big biomass of shoots in contaminated soil,possessing strong metal-tolerance with limited metal translocation from roots to shoots.When As,Cd and Pb concentrations in the soil are less than 254,76.1 and 1 552 mg/kg,respectively,plant height and dried biomass are slightly reduced,the accumulation of As,Cd and Pb in shoots of giant reed is low while metal concentration in roots is high,and the anatomical characteristics of stem tissues are thick and homogeneous according to SEM images.However,plant height and dried biomass are significantly reduced and metal concentration in plant shoots and roots are significantly increased(P<0.05),the stems images become heterogeneous and the secretion in vascular bundles increases significantly when As,Cd and Pb concentrations in the soil exceed 334,101 and 2 052 mg/kg,respectively.The giant reed is a promising,naturally occurring plant with strong metal-tolerance,which can be cultivated in soils contaminated with multiple metals for ecoremediation purposes.展开更多
The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with ...The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.展开更多
Anatomical data regarding the climbing modes and cambial variants of the stem transverse section in the Menispermaceae in Taiwan are lacking. Here, we examined the climbing modes and anomalous structure of climber ste...Anatomical data regarding the climbing modes and cambial variants of the stem transverse section in the Menispermaceae in Taiwan are lacking. Here, we examined the climbing modes and anomalous structure of climber stems in this family. Reviewing the previous reports of cambial variants in angiosperm liana families, a list of angiosperm liana families processing specified types of cambial variants and the terms based on description for the transverse section of a stem were provided. The results show that Cocculus laurifolius DC. is a shrub, Stephania cephalantha Hayata and Stephania longa Lour. are vines, and the remaining 13 species are lianas. In all species, the climbing mode was twining and dextrorse stems. The anomalous structure of the stem comprised successive cambia in Cocculus laurifolius, a combination of xylem in plates and dissected xylem in Cocculus orbiculatus (L.) DC., and xylem in plates in the remaining 14 species. In the genus Cyclea, parenchyma proliferation from the secondary xylem resulted in the development of 1 - 3 linear lobes in each collateral vascular bundle. The vessel diameter of C. laurifolius is <50 μm which is the smallest size due to shrub in its life stage. C. orbiculatus had the longest collateral vascular bundles, longest rays and widest rays. Cyclea ochiaiana (Yamam.) S. F. Huang & T. C. Huang had the widest collateral vascular bundles. Sinomenium acutum (Thunb.) Rehder & E. H. Wilson had the highest vessel density. Tinospora crispa (L.) Hook. F. et Thoms develops blunt tubercles on the epidermis and Stephania tetrandra S. Moore bears conspicuous phellem layer. Those findings, such as the climbing mode, the features of parenchyma proliferation, the features of collateral vascular bundles (number, width, length), dimorphic vessels, and size and density of vessels, highlight new anatomical characteristics for species identification in the Menispermaceae in Taiwan.展开更多
Brachial plexuses of 110 healthy volunteers were examined using high resolution color Doppler ultrasound. Ultrasonic characteristics and anatomic variation in the intervertebral foramen, interscalene, supraclavicular ...Brachial plexuses of 110 healthy volunteers were examined using high resolution color Doppler ultrasound. Ultrasonic characteristics and anatomic variation in the intervertebral foramen, interscalene, supraclavicular and infraclavicular, as well as the axillary brachial plexus were investigated. Results confirmed that the normal brachial plexus on cross section exhibited round or elliptic hypoechoic texture. Longitudinal section imaging showed many parallel linear hypo-moderate echoes, with hypo-echo. The transverse processes of the seventh cervical vertebra, the scalene space, the subclavian artery and the deep cervical artery are important markers in an examination. The display rates for the interscalene, and supraclavicular and axillary brachial plexuses were 100% each, while that for the infraclavicular brachial plexus was 97%. The region where the normal brachial plexus root traversed the intervertebral foramen exhibited a regular hypo-echo. The display rate for the C5-7 nerve roots was 100%, while those for C8 and T1 were 83% and 68%, respectively. A total of 20 of the 110 subjects underwent cervical CT scan. High-frequency ultrasound can clearly display the outline of the transverse processes of the vertebrae, which were consistent with CT results. These results indicate that high-frequency ultrasound provides a new method for observing the morphology of the brachial plexus. The C~ vertebra is a marker for identifying the position of brachial plexus nerve roots.展开更多
The anatomical features of leaves in 11 species of plantsgrowninatemperaturegradientandatemperature+CO_(2)gradient were studied.The palisade parenchyma thickness,the spongy parenchyma thickness and the total leaf thic...The anatomical features of leaves in 11 species of plantsgrowninatemperaturegradientandatemperature+CO_(2)gradient were studied.The palisade parenchyma thickness,the spongy parenchyma thickness and the total leaf thickness were measured and analyzed to investigate the effects of ele-vated temperature and CO_(2)on the anatomical characteristics of the leaves.Our results show that with the increase of temperature,the leaf thickness of C_(4)species increased while the leaf thickness of C_(3)species showed no constant changes.With increased CO_(2),seven out of nine C_(3)species exhibited increased total leaf thickness.In C_(4)species,leaf thickness decreased.As for the trend on the multi-grades,the plants exhibited linear or non-linear changes.With the increase of temperature or both temperature and CO_(2)for the 11 species investigated,leaf thickness varied greatly in different plants(species)and even in different branches on the same plant.These results demonstrated that the effect of increasing CO_(2)and temperature on the anatomical features of the leaves were species-specific.Since plant structures are correlated with plant functions,the changes in leaf anatomical characteristics in elevated temperature and CO_(2)may lead to functional differences.展开更多
Daemonorops margaritae is among the most important commercial rattan in South China. Its microstructure and basic anatomical characteristics as well as variation were investigated. Results show that: 1)The variation a...Daemonorops margaritae is among the most important commercial rattan in South China. Its microstructure and basic anatomical characteristics as well as variation were investigated. Results show that: 1)The variation along the height is small, while the variation along the radial direction is significant; 2) The fibre length, fibre ratio and distribution density of the vascular bundles in the cross section decrease from cortex to core, while the fibre width, vessel element length and width, parenchyma ratio, vessel ratio, vascular bundle size and metaxylem vessel diameter in the cross section increase from cortex to core; 3) According to its anatomical structure, the cane properties change greatly from cortex to epidermis, which should be fully considered in its practical utilization.展开更多
Brittleness culm is an important agronomic trait that has a potential usefulness in agricultural activity as animal forage although the developmental mechanism is not clear yet. In the present study, the anatomical an...Brittleness culm is an important agronomic trait that has a potential usefulness in agricultural activity as animal forage although the developmental mechanism is not clear yet. In the present study, the anatomical and chemical characteristics as well as some ecophysiological features in the brittleness culm mutation of rice (Oryza sativa L.) were investigated. Compared with the wild type (WT), the brittleness culm mutant (bcm) exhibited higher culm vascular bundle distance and lower culm wall thickness, leaf interveinal distance and leaf thickness. Ratio of bundle sheath cell/whole bundle and areas of whole vascular bundles and bundle sheath of leaves were reduced while ratios of xylem and phloem to whole bundles were elevated in bcm. The Fourier transform infrared (FTIR) microspectroscopy analysis and further histochemical and physiological measurements revealed that the different contents and depositions of cell wall components such as pectins, lignin, suberin and cellulose all participated in the mutation of brittleness. However, the mutant presented no significant changes in leaf photosynthetic dynamics and apoplastic transport ability. These results strongly indicate that the alterations in anatomical and chemical characteristics, rather than changes in major ecophysiological features such as photosynthesis and apoplastic transport were involved in the brittleness mutation of rice.展开更多
基金Project(20507022) supported by the National Natural Science Foundation of China
文摘A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contaminated with As,Cd and Pb.The results show that giant reed rapidly grows with big biomass of shoots in contaminated soil,possessing strong metal-tolerance with limited metal translocation from roots to shoots.When As,Cd and Pb concentrations in the soil are less than 254,76.1 and 1 552 mg/kg,respectively,plant height and dried biomass are slightly reduced,the accumulation of As,Cd and Pb in shoots of giant reed is low while metal concentration in roots is high,and the anatomical characteristics of stem tissues are thick and homogeneous according to SEM images.However,plant height and dried biomass are significantly reduced and metal concentration in plant shoots and roots are significantly increased(P<0.05),the stems images become heterogeneous and the secretion in vascular bundles increases significantly when As,Cd and Pb concentrations in the soil exceed 334,101 and 2 052 mg/kg,respectively.The giant reed is a promising,naturally occurring plant with strong metal-tolerance,which can be cultivated in soils contaminated with multiple metals for ecoremediation purposes.
基金supported by the National Natural Science Foundation of China (Grant No. 30470274)the Zhejiang Natural Science Foundation of China (Grant No. Y306087)the Zijin Program of Zhejiang University for Young Teachers, China.
文摘The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.
文摘Anatomical data regarding the climbing modes and cambial variants of the stem transverse section in the Menispermaceae in Taiwan are lacking. Here, we examined the climbing modes and anomalous structure of climber stems in this family. Reviewing the previous reports of cambial variants in angiosperm liana families, a list of angiosperm liana families processing specified types of cambial variants and the terms based on description for the transverse section of a stem were provided. The results show that Cocculus laurifolius DC. is a shrub, Stephania cephalantha Hayata and Stephania longa Lour. are vines, and the remaining 13 species are lianas. In all species, the climbing mode was twining and dextrorse stems. The anomalous structure of the stem comprised successive cambia in Cocculus laurifolius, a combination of xylem in plates and dissected xylem in Cocculus orbiculatus (L.) DC., and xylem in plates in the remaining 14 species. In the genus Cyclea, parenchyma proliferation from the secondary xylem resulted in the development of 1 - 3 linear lobes in each collateral vascular bundle. The vessel diameter of C. laurifolius is <50 μm which is the smallest size due to shrub in its life stage. C. orbiculatus had the longest collateral vascular bundles, longest rays and widest rays. Cyclea ochiaiana (Yamam.) S. F. Huang & T. C. Huang had the widest collateral vascular bundles. Sinomenium acutum (Thunb.) Rehder & E. H. Wilson had the highest vessel density. Tinospora crispa (L.) Hook. F. et Thoms develops blunt tubercles on the epidermis and Stephania tetrandra S. Moore bears conspicuous phellem layer. Those findings, such as the climbing mode, the features of parenchyma proliferation, the features of collateral vascular bundles (number, width, length), dimorphic vessels, and size and density of vessels, highlight new anatomical characteristics for species identification in the Menispermaceae in Taiwan.
基金funded by the Fundamental Research Funds for the Higher Learning Schools of Youth Teacher Education Program of Sun Yat-sen University in 2009,No.09YKPY05the Natural Science Foundation of Guangdong Province,No.S2011010004708
文摘Brachial plexuses of 110 healthy volunteers were examined using high resolution color Doppler ultrasound. Ultrasonic characteristics and anatomic variation in the intervertebral foramen, interscalene, supraclavicular and infraclavicular, as well as the axillary brachial plexus were investigated. Results confirmed that the normal brachial plexus on cross section exhibited round or elliptic hypoechoic texture. Longitudinal section imaging showed many parallel linear hypo-moderate echoes, with hypo-echo. The transverse processes of the seventh cervical vertebra, the scalene space, the subclavian artery and the deep cervical artery are important markers in an examination. The display rates for the interscalene, and supraclavicular and axillary brachial plexuses were 100% each, while that for the infraclavicular brachial plexus was 97%. The region where the normal brachial plexus root traversed the intervertebral foramen exhibited a regular hypo-echo. The display rate for the C5-7 nerve roots was 100%, while those for C8 and T1 were 83% and 68%, respectively. A total of 20 of the 110 subjects underwent cervical CT scan. High-frequency ultrasound can clearly display the outline of the transverse processes of the vertebrae, which were consistent with CT results. These results indicate that high-frequency ultrasound provides a new method for observing the morphology of the brachial plexus. The C~ vertebra is a marker for identifying the position of brachial plexus nerve roots.
文摘The anatomical features of leaves in 11 species of plantsgrowninatemperaturegradientandatemperature+CO_(2)gradient were studied.The palisade parenchyma thickness,the spongy parenchyma thickness and the total leaf thickness were measured and analyzed to investigate the effects of ele-vated temperature and CO_(2)on the anatomical characteristics of the leaves.Our results show that with the increase of temperature,the leaf thickness of C_(4)species increased while the leaf thickness of C_(3)species showed no constant changes.With increased CO_(2),seven out of nine C_(3)species exhibited increased total leaf thickness.In C_(4)species,leaf thickness decreased.As for the trend on the multi-grades,the plants exhibited linear or non-linear changes.With the increase of temperature or both temperature and CO_(2)for the 11 species investigated,leaf thickness varied greatly in different plants(species)and even in different branches on the same plant.These results demonstrated that the effect of increasing CO_(2)and temperature on the anatomical features of the leaves were species-specific.Since plant structures are correlated with plant functions,the changes in leaf anatomical characteristics in elevated temperature and CO_(2)may lead to functional differences.
基金National Key Project of Science and Technology Supporting Programs Funded by MOST of China During the 11th Five-year Plan (No.2006BAD19B04)Basic Research Operating Special Funds of ICBR (06/07-A02 & B07).
文摘Daemonorops margaritae is among the most important commercial rattan in South China. Its microstructure and basic anatomical characteristics as well as variation were investigated. Results show that: 1)The variation along the height is small, while the variation along the radial direction is significant; 2) The fibre length, fibre ratio and distribution density of the vascular bundles in the cross section decrease from cortex to core, while the fibre width, vessel element length and width, parenchyma ratio, vessel ratio, vascular bundle size and metaxylem vessel diameter in the cross section increase from cortex to core; 3) According to its anatomical structure, the cane properties change greatly from cortex to epidermis, which should be fully considered in its practical utilization.
基金Supported by the National Natural Science Foundation of China (30470274)the Zhejiang Provincial Natural Science Foundation (Y306087)
文摘Brittleness culm is an important agronomic trait that has a potential usefulness in agricultural activity as animal forage although the developmental mechanism is not clear yet. In the present study, the anatomical and chemical characteristics as well as some ecophysiological features in the brittleness culm mutation of rice (Oryza sativa L.) were investigated. Compared with the wild type (WT), the brittleness culm mutant (bcm) exhibited higher culm vascular bundle distance and lower culm wall thickness, leaf interveinal distance and leaf thickness. Ratio of bundle sheath cell/whole bundle and areas of whole vascular bundles and bundle sheath of leaves were reduced while ratios of xylem and phloem to whole bundles were elevated in bcm. The Fourier transform infrared (FTIR) microspectroscopy analysis and further histochemical and physiological measurements revealed that the different contents and depositions of cell wall components such as pectins, lignin, suberin and cellulose all participated in the mutation of brittleness. However, the mutant presented no significant changes in leaf photosynthetic dynamics and apoplastic transport ability. These results strongly indicate that the alterations in anatomical and chemical characteristics, rather than changes in major ecophysiological features such as photosynthesis and apoplastic transport were involved in the brittleness mutation of rice.