We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckion...We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.展开更多
The most common age-related neurodegenerative disease is Alzheimer's disease(AD) characterized by aggregated amyloid-β(Aβ) peptides in extracellular plaques and aggregated hyperphosphorylated tau protein in intr...The most common age-related neurodegenerative disease is Alzheimer's disease(AD) characterized by aggregated amyloid-β(Aβ) peptides in extracellular plaques and aggregated hyperphosphorylated tau protein in intraneuronal neurofibrillary tangles,together with loss of cholinergic neurons,synaptic alterations,and chronic inflammation within the brain.These lead to progressive impairment of cognitive function.There is evidence of innate immune activation in AD with microgliosis.Classically-activated microglia(M1 state) secrete inflammatory and neurotoxic mediators,and peripheral immune cells are recruited to inflammation sites in the brain.The few drugs approved by the US FDA for the treatment of AD improve symptoms but do not change the course of disease progression and may cause some undesirable effects.Translation of active and passive immunotherapy targeting Aβ in AD animal model trials had limited success in clinical trials.Treatment with immunomodulatory/anti-inflammatory agents early in the disease process,while not preventive,is able to inhibit the inflammatory consequences of both Aβ and tau aggregation.The studies described in this review have identified several agents with immunomodulatory properties that alleviated AD pathology and cognitive impairment in animal models of AD.The majority of the animal studies reviewed had used transgenic models of early-onset AD.More effort needs to be given to creat models of late-onset AD.The effects of a combinational therapy involving two or more of the tested pharmaceutical agents,or one of these agents given in conjunction with one of the cell-based therapies,in an aged animal model of AD would warrant investigation.展开更多
David Ellis是国际信息行为研究领域的重要领军人物,由其创建的信息搜寻行为模型具有独特的理论意义.随着社会环境、用户群体的变化,信息搜寻行为模型的活动特征也在不断地发生变化,并表现出了极大的适应性和包容性,为信息行为理论体系...David Ellis是国际信息行为研究领域的重要领军人物,由其创建的信息搜寻行为模型具有独特的理论意义.随着社会环境、用户群体的变化,信息搜寻行为模型的活动特征也在不断地发生变化,并表现出了极大的适应性和包容性,为信息行为理论体系的完善做出了很大贡献.文中从用户群体、社会环境、活动特征和模型应用4个方面对Ellis信息搜寻行为模型的演化进行了梳理,展现了Ellis信息搜寻行为模型的详细演化历程,提出了该模型在其演化过程中的不足以及未来的发展方向.展开更多
文摘We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.
文摘The most common age-related neurodegenerative disease is Alzheimer's disease(AD) characterized by aggregated amyloid-β(Aβ) peptides in extracellular plaques and aggregated hyperphosphorylated tau protein in intraneuronal neurofibrillary tangles,together with loss of cholinergic neurons,synaptic alterations,and chronic inflammation within the brain.These lead to progressive impairment of cognitive function.There is evidence of innate immune activation in AD with microgliosis.Classically-activated microglia(M1 state) secrete inflammatory and neurotoxic mediators,and peripheral immune cells are recruited to inflammation sites in the brain.The few drugs approved by the US FDA for the treatment of AD improve symptoms but do not change the course of disease progression and may cause some undesirable effects.Translation of active and passive immunotherapy targeting Aβ in AD animal model trials had limited success in clinical trials.Treatment with immunomodulatory/anti-inflammatory agents early in the disease process,while not preventive,is able to inhibit the inflammatory consequences of both Aβ and tau aggregation.The studies described in this review have identified several agents with immunomodulatory properties that alleviated AD pathology and cognitive impairment in animal models of AD.The majority of the animal studies reviewed had used transgenic models of early-onset AD.More effort needs to be given to creat models of late-onset AD.The effects of a combinational therapy involving two or more of the tested pharmaceutical agents,or one of these agents given in conjunction with one of the cell-based therapies,in an aged animal model of AD would warrant investigation.