Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more a...Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more attention. Researchers have discovered various types of energy defects in Android applications, which could quickly drain the battery power of mobile devices. Such defects not only cause inconvenience to users, but also frustrate Android developers as diagnosing the energy inefficiency of a software product is a non-trivial task. In this work, we perform a literature review to understand the state of the art of energy inefficiency diagnosis for Android applications. We identified 55 research papers published in recent years and classified existing studies from four different perspectives, including power estimation method, hardware component, types of energy defects, and program analysis approach. We also did a cross-perspective analysis to summarize and compare our studied techniques. We hope that our review can help structure and unify the literature and shed light on future research, as well as drawing developers' attention to build energy-efficient Android applications.展开更多
In recent days the usage of android smartphones has increased exten-sively by end-users.There are several applications in different categories bank-ing/finance,social engineering,education,sports andfitness,and many mor...In recent days the usage of android smartphones has increased exten-sively by end-users.There are several applications in different categories bank-ing/finance,social engineering,education,sports andfitness,and many more applications.The android stack is more vulnerable compared to other mobile plat-forms like IOS,Windows,or Blackberry because of the open-source platform.In the Existing system,malware is written using vulnerable system calls to bypass signature detection important drawback is might not work with zero-day exploits and stealth malware.The attackers target the victim with various attacks like adware,backdoor,spyware,ransomware,and zero-day exploits and create threat hunts on the day-to-day basics.In the existing approach,there are various tradi-tional machine learning classifiers for building a decision support system with limitations such as low detection rate and less feature selection.The important contents taken for building model from android applications like Intent Filter,Per-mission Signature,API Calls,and System commands are taken from the manifestfile.The function parameters of various machine and deep learning classifiers like Nave Bayes,k-Nearest Neighbors(k-NN),Support Vector Machine(SVM),Ada Boost,and Multi-Layer Perceptron(MLP)are done for effective results.In our pro-posed work,we have used an unsupervised learning multilayer perceptron with multiple target labels and built a model with a better accuracy rate compared to logistic regression,and rank the best features for detection of applications and clas-sify as malicious or benign can be used as threat model by online antivirus scanners.展开更多
Mobile applications(apps for short)often need to display images.However,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user experience.This paper first...Mobile applications(apps for short)often need to display images.However,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user experience.This paper first establishes a descriptive framework for the image displaying procedures of IID issues.Based on the descriptive framework,we conduct an empirical study of 216 real-world IID issues collected from 243 popular open-source Android apps to validate the presence and severity of IID issues,and then shed light on these issues’characteristics to support research on effective issue detection.With the findings of this study,we propose a static IID issue detection tool TAPIR and evaluate it with 243 real-world Android apps.Encouragingly,49 and 64 previously-unknown IID issues in two different versions of 16 apps reported by TAPIR are manually confirmed as true positives,respectively,and 16 previously-unknown IID issues reported by TAPIR have been confirmed by developers and 13 have been fixed.Then,we further evaluate the performance impact of these detected IID issues and the performance improvement if they are fixed.The results demonstrate that the IID issues detected by TAPIR indeed cause significant performance degradation,which further show the effectiveness and efficiency of TAPIR.展开更多
Collaborative filtering solves information overload problem by presenting personalized content to individual users based on their interests, which has been extensively applied in real-world recommender systems. As a c...Collaborative filtering solves information overload problem by presenting personalized content to individual users based on their interests, which has been extensively applied in real-world recommender systems. As a class of simple but efficient collaborative filtering method, similarity based approaches make predictions by finding users with similar taste or items that have been similarly chosen. However, as the number of users or items grows rapidly, the traditional approach is suffering from the data sparsity problem. Inaccurate similarities derived from the sparse user-item associations would generate the inaccurate neighborhood for each user or item. Consequently, its poor recommendation drives us to propose a Threshold based Similarity Transitivity (TST) method in this paper. TST firstly filters out those inaccurate similarities by setting an intersection threshold and then replaces them with the transitivity similarity. Besides, the TST method is designed to be scalable with MapReduce framework based on cloud computing platform. We evaluate our algorithm on the public data set MovieLens and a real-world data set from AppChina (an Android application market) with several well-known metrics including precision, recall, coverage, and popularity. The experimental results demonstrate that TST copes well with the tradeoff between quality and quantity of similarity by setting an appropriate threshold. Moreover, we can experimentally find the optimal threshold which will be smaller as the data set becomes sparser. The experimental results also show that TST significantly outperforms the traditional approach even when the data becomes sparser.展开更多
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021A1515012297)the Shenzhen Science and Technology Innovation Commission(R2020A045)the Open Project of Guangdong Provincial Key Laboratory of High-Performance Computing(2021).
文摘Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more attention. Researchers have discovered various types of energy defects in Android applications, which could quickly drain the battery power of mobile devices. Such defects not only cause inconvenience to users, but also frustrate Android developers as diagnosing the energy inefficiency of a software product is a non-trivial task. In this work, we perform a literature review to understand the state of the art of energy inefficiency diagnosis for Android applications. We identified 55 research papers published in recent years and classified existing studies from four different perspectives, including power estimation method, hardware component, types of energy defects, and program analysis approach. We also did a cross-perspective analysis to summarize and compare our studied techniques. We hope that our review can help structure and unify the literature and shed light on future research, as well as drawing developers' attention to build energy-efficient Android applications.
文摘In recent days the usage of android smartphones has increased exten-sively by end-users.There are several applications in different categories bank-ing/finance,social engineering,education,sports andfitness,and many more applications.The android stack is more vulnerable compared to other mobile plat-forms like IOS,Windows,or Blackberry because of the open-source platform.In the Existing system,malware is written using vulnerable system calls to bypass signature detection important drawback is might not work with zero-day exploits and stealth malware.The attackers target the victim with various attacks like adware,backdoor,spyware,ransomware,and zero-day exploits and create threat hunts on the day-to-day basics.In the existing approach,there are various tradi-tional machine learning classifiers for building a decision support system with limitations such as low detection rate and less feature selection.The important contents taken for building model from android applications like Intent Filter,Per-mission Signature,API Calls,and System commands are taken from the manifestfile.The function parameters of various machine and deep learning classifiers like Nave Bayes,k-Nearest Neighbors(k-NN),Support Vector Machine(SVM),Ada Boost,and Multi-Layer Perceptron(MLP)are done for effective results.In our pro-posed work,we have used an unsupervised learning multilayer perceptron with multiple target labels and built a model with a better accuracy rate compared to logistic regression,and rank the best features for detection of applications and clas-sify as malicious or benign can be used as threat model by online antivirus scanners.
基金supported by the Leading-Edge Technology Program of Jiangsu Natural Science Foundation of China under Grant No.BK20202001the National Natural Science Foundation of China under Grant No.61932021.
文摘Mobile applications(apps for short)often need to display images.However,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user experience.This paper first establishes a descriptive framework for the image displaying procedures of IID issues.Based on the descriptive framework,we conduct an empirical study of 216 real-world IID issues collected from 243 popular open-source Android apps to validate the presence and severity of IID issues,and then shed light on these issues’characteristics to support research on effective issue detection.With the findings of this study,we propose a static IID issue detection tool TAPIR and evaluate it with 243 real-world Android apps.Encouragingly,49 and 64 previously-unknown IID issues in two different versions of 16 apps reported by TAPIR are manually confirmed as true positives,respectively,and 16 previously-unknown IID issues reported by TAPIR have been confirmed by developers and 13 have been fixed.Then,we further evaluate the performance impact of these detected IID issues and the performance improvement if they are fixed.The results demonstrate that the IID issues detected by TAPIR indeed cause significant performance degradation,which further show the effectiveness and efficiency of TAPIR.
基金supported by Ministry of Science and Technology of China under the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2011CB302805)the National Natural Science Foundation of China A3 Program (No. 61161140320)+1 种基金the National Natural Science Foundation of China (No. 61233016)supported by Intel Research Council with the title of Security Vulnerability Analysis based on Cloud Platform with Intel IA Architecture
文摘Collaborative filtering solves information overload problem by presenting personalized content to individual users based on their interests, which has been extensively applied in real-world recommender systems. As a class of simple but efficient collaborative filtering method, similarity based approaches make predictions by finding users with similar taste or items that have been similarly chosen. However, as the number of users or items grows rapidly, the traditional approach is suffering from the data sparsity problem. Inaccurate similarities derived from the sparse user-item associations would generate the inaccurate neighborhood for each user or item. Consequently, its poor recommendation drives us to propose a Threshold based Similarity Transitivity (TST) method in this paper. TST firstly filters out those inaccurate similarities by setting an intersection threshold and then replaces them with the transitivity similarity. Besides, the TST method is designed to be scalable with MapReduce framework based on cloud computing platform. We evaluate our algorithm on the public data set MovieLens and a real-world data set from AppChina (an Android application market) with several well-known metrics including precision, recall, coverage, and popularity. The experimental results demonstrate that TST copes well with the tradeoff between quality and quantity of similarity by setting an appropriate threshold. Moreover, we can experimentally find the optimal threshold which will be smaller as the data set becomes sparser. The experimental results also show that TST significantly outperforms the traditional approach even when the data becomes sparser.