OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brai...OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brain barrier(BBB).METHODS In the present study,dendrimer,polyamidoamine(PAMAM),was synthesized as the nano-drug carriers.Angiopep-2,which has been proved excellent ability to cross the BBB,was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethylene glycol(PEG).Then scutellarin(STA)was encapsulated into the functionalized nanoparticles(NPs)to formulate Angiopep-2 modified STA-loaded PEG-PAMAM NPs.Ischemic stroke model was established to evaluate the treatment efficacy and protective mechanism of Angiopep-2-STA-PEG-PAMAM NPs.RESULTS The pharmacokinetics and biodistribu-tion demonstrated that Angiopep-2-STA-PEG-PAMAM NPs exhibited significantly higher plasma concentration from 1 h to 10 h after intravenous administration and improve accumulation in brain(4.7-fold)compared with STA solution.Moreover,prolonged elimination half-life(4.8-fold)and lower clearance(3.4-fold)were observed.The brain uptake study of 6-coumarin confirmed that Angiopep-2-PEG-PAMAM NPs possessed better brain targeting efficacy(3.2-fold)than PEG-PAMAM NPs.Angiopep-2-STA-PEG-PAMAM NPs obviously ameliorated infarct volume,neurological deficit,histopathological severity and neuronal apoptosis.In addition,Angiopep-2-STA-PEG-PAMAM NPs markedly inhibited the calcium content and the levels of IL-12p40,IL-13,IL-17 and IL-23.Furthermore,Angiopep-2-STA-PEG-PAMAM NPs significantly decreased the m RNA and protein expressions of HMGB1,TLR2,TLR4,TLR5,My D88,TRIF,TRAM,IRAK-4,TRAF6,IкBα,IKKβand NF-кBp65.CONCLUSION The results suggested that Angiopep-2modified scutellarin-loaded PEG-PAMAM nanocarriers possessed remarkable neuroprotective effects on ischemic stroke through modulation of inflammatory cascades and HMGB1/TLRs/MyD 88-induced NF-κB activation pathways.展开更多
Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such pept...Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such peptides in WDPHs through a combination of in silico and in vitro analysis.In total,1262 peptide sequences were observed by nano liquid chromatography/tandem mass spectrometry(nano LC-MS/MS)and 4 novel COX-2 inhibitory peptides(AGFP,FPGA,LFPD,and VGFP)were identified.Enzyme kinetic data indicated that AGFP,FPGA,and LFPD displayed mixed-type COX-2 inhibition,whereas VGFP was a non-competitive inhibitor.This is mainly because the peptides form hydrogen bonds and hydrophobic interactions with residues in the COX-2 active site.These results demonstrate that computer analysis combined with in vitro evaluation allows for rapid screening of COX-2 inhibitory peptides in walnut protein dregs.展开更多
This editorial is stimulated by the article by Alqifari et al published in the World Journal of Diabetes(2024).Alqifari et al focus on practical advice for the clinical use of glucagon-like-peptide-1(GLP-1)receptor ag...This editorial is stimulated by the article by Alqifari et al published in the World Journal of Diabetes(2024).Alqifari et al focus on practical advice for the clinical use of glucagon-like-peptide-1(GLP-1)receptor agonists(GLP-1RAs)in the management of type 2 diabetes and this editorial provides complementary information.We initially give a brief historical perspective of the development of GLP-1RAs stimulated by recognition of the‘incretin effect’,the substantially greater insulin increase to enteral when compared to euglycaemic intravenous glucose,and the identification of the incretin hormones,GIP and GLP-1.In addition to stimulating insulin,GLP-1 reduces postprandial glucose levels by slowing gastric emptying.GLP-1RAs were developed because native GLP-1 has a very short plasma half-life.The majority of current GLP-1RAs are administered by subcutaneous injection once a week.They are potent in glucose lowering without leading to hypoglycaemia,stimulate weight loss in obese individuals and lead to cardiovascular and renal protection.The landscape in relation to GLP-1RAs is broadening rapidly,with different formulations and their combination with other peptides to facilitate both glucose lowering and weight loss.There is a need for more information relating to the effects of GLP-1RAs to induce gastrointestinal symptoms and slow gastric emptying which is likely to allow their use to become more effective and personalised.展开更多
Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that we...Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.展开更多
Reactive oxygen species(ROS)-induced oxidative damage is strongly associated with the pathogenesis of chronic diseases,and natural antioxidant peptides have good abilities of scavenging ROS.The antioxidant activity of...Reactive oxygen species(ROS)-induced oxidative damage is strongly associated with the pathogenesis of chronic diseases,and natural antioxidant peptides have good abilities of scavenging ROS.The antioxidant activity of peptide Lys-Ser-Pro-Leu-Tyr(KSPLY)derived from Hericium erinaceus remains unclear.In the present study,the antioxidant effect and mechanism of KSPLY on H_(2)O_(2)-induced oxidative damage in HepG2 cells were investigated.The results indicated that KSPLY exhibited the antioxidant capacity in H_(2)O_(2)-induced HepG2 cells by enhancing superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT)activities.In comparison with the H_(2)O_(2)-treated damage group,the apoptosis rate,ROS level,and malondialdehyde(MDA)content of HepG2 cells treated with KSPLY were significantly decreased.The H.erinaceus-derived peptide KSPLY pretreatment promoted the expression of detoxification and antioxidant enzymes via the Keap1/Nrf2 signal pathway,thereby inhibiting the generation of ROS and MDA.In conclusion,the H.erinaceus-derived peptide KSPLY effectively protected HepG2 cells against H_(2)O_(2)-induced oxidative damage,and it provided a theoretical basis for the further development of new natural antioxidants.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Mitochondrial protein translation that is essential for aerobic energy production includes four essential steps of the mitochondrial ribosome cycle,namely,initiation,elongation,termination of the polypeptide,and ribos...Mitochondrial protein translation that is essential for aerobic energy production includes four essential steps of the mitochondrial ribosome cycle,namely,initiation,elongation,termination of the polypeptide,and ribosome recycling.Translation termination initiates when a stop codon enters the A site of the mitochondrial ribosome where it is recognized by a dedicated peptide release factor(RF).However,RFs and mechanisms involved in translation in plant mitochondria,especially in monocotyledons,remain largely unknown.Here,we identified a crumpled kernel(crk5 allele)mutant,with significantly decreased kernel size,100-kernel weight,and an embryo-lethal phenotype.The Crk5 allele was isolated using map-based cloning and found to encode a mitochondrial localization RF2a.As it is an ortholog of Arabidopsis mitochondrial RF2a,we named the gene ZmmtRF2a.ZmmtRF2a is missing the 5th–7th exons in the crk5 resulting in deletion of domains containing motifs GGQ and SPF that are essential for release activity of RF,mitochondrial ribosome binding,and stop codon recognition.Western blot and qRT-PCR analyses indicate that the crk5 mutation results in abnormal mitochondrion structure and function.Intriguingly,we observed a feedback loop in the crk5 with up-regulated transcript levels detected for several mitochondrial ribosome and mitochondrial-related components,in particular mitochondrial complexes CI,CIV,and a ribosome assembly related PPR.Together,our data support a crucial role for ZmmtRF2a in regulation of mitochondrial structure and function in maize.展开更多
BACKGROUND Microalbuminuria is an early and informative marker of diabetic nephropathy.Our study found that microalbuminuria developed in patients with newly diagnosed type 2 diabetes mellitus(T2DM).AIM To investigate...BACKGROUND Microalbuminuria is an early and informative marker of diabetic nephropathy.Our study found that microalbuminuria developed in patients with newly diagnosed type 2 diabetes mellitus(T2DM).AIM To investigate the association between glucagon-like peptide 1(GLP-1)and microalbuminuria in newly diagnosed T2DM patients.METHODS In total,760 patients were recruited for this cross-sectional study.The GLP-1 levels during a standard meal test and urinary albumin-creatinine ratio(UACR)were determined.RESULTS Patients with microalbuminuria exhibited lower GLP-1 levels at 30 min and 120 min during a standard meal test than patients with normal albuminuria(30 min GLP-1,16.7±13.3 pmol vs 19.9±15.6 pmol,P=0.007;120 min GLP-1,16.0±14.1 pmol vs 18.4±13.8 pmol,P=0.037).The corresponding area under the curve for active GLP-1(AUCGLP-1)was also lower in microalbuminuria patients(2257,1585 to 3506 vs 2896,1763 to 4726,pmol×min,P=0.003).Postprandial GLP-1 levels at 30 min and 120 min and AUCGLP-1 were negatively correlated with the UACR(r=0.159,r=0.132,r=0.206,respectively,P<0.001).The prevalence of microalbuminuria in patients with newly diagnosed T2DM was 21.7%,which decreased with increasing quartiles of AUCGLP-1 levels(27.4%,25.3%,18.9%and 15.8%).After logistic regression analysis adjusted for sex,age,hemoglobin A1c,body mass index,systolic blood pressure,estimated glomerular filtration rate,homeostasis model assessment of insulin resistance,AUC_(glucose)and AUC_(glucagon)patients in quartile 4 of the AUCGLP-1 presented a lower risk of microalbuminuria compared with the patients in quartile 1(odds ratio=0.547,95%confidence interval:0.325-0.920,P=0.01).A consistent association was also found between 30 min GLP-1 or 120 min GLP-1 and microalbuminuria.CONCLUSION Postprandial GLP-1 levels were independently associated with microalbuminuria in newly diagnosed Chinese T2DM patients.展开更多
BACKGROUND Formyl peptide receptor 2(Fpr2)is an important receptor in host resistance to bacterial infections.In previous studies,we found that the liver of Fpr2-/-mice is the most severely damaged target organ in blo...BACKGROUND Formyl peptide receptor 2(Fpr2)is an important receptor in host resistance to bacterial infections.In previous studies,we found that the liver of Fpr2-/-mice is the most severely damaged target organ in bloodstream infections,although the reason for this is unclear.AIM To investigate the role of Fpr2 in liver homeostasis and host resistance to bacterial infections.METHODS Transcriptome sequencing was performed on the livers of Fpr2-/-and wild-type(WT)mice.Differentially expressed genes(DEGs)were identified in the Fpr2-/-and WT mice,and the biological functions of DEGs were analyzed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.Quantitative real time-polymerase chain reaction(qRT-PCR)and western blot(WB)analyses were used to further validate the expression levels of differential genes.Cell counting kit-8 assay was employed to investigate cell survival.The cell cycle detection kit was used to measure the distribution of cell cycles.The Luminex assay was used to analyze cytokine levels in the liver.The serum biochemical indices and the number of neutrophils in the liver were measured,and hepatic histopathological analysis was performed.RESULTS Compared with the WT group,445 DEGs,including 325 upregulated genes and 120 downregulated genes,were identified in the liver of Fpr2-/-mice.The enrichment analysis using GO and KEGG showed that these DEGs were mainly related to cell cycle.The qRT-PCR analysis confirmed that several key genes(CycA,CycB1,Cdc20,Cdc25c,and Cdk1)involved in the cell cycle had significant changes.The WB analysis confirmed a decrease in the expression of CDK1 protein.WRW4(an antagonist of Fpr2)could inhibit the proliferation of HepG2 cells in a concentration dependent manner,with an increase in the number of cells in the G0/G1 phase,and a decrease in the number of cells in the S phase.Serum alanine aminotransferase levels increased in Fpr2-/-mice.The Luminex assay measurements showed that interleukin(IL)-10 and chemokine(C-X-C motif)ligand(CXCL)-1 levels were significantly reduced in the liver of Fpr2-/-mice.There was no difference in the number of neutrophils,serum C-reactive protein levels,and liver pathology between WT and Fpr2-/-mice.CONCLUSION Fpr2 participates in the regulation of cell cycle and cell proliferation,and affects the expression of IL-10 and CXCL-1,thus playing an important protective role in maintaining liver homeostasis.展开更多
Aim: This study aimed to investigate the effect of non-synonymous SNPs (nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein function and structure using different computational software. Introduct...Aim: This study aimed to investigate the effect of non-synonymous SNPs (nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein function and structure using different computational software. Introduction: The GLP1R gene provides the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes. The protein is an important drug target for the treatment of type-2 diabetes and stroke. Material and Methods: Different nsSNPs and protein-related sequences were obtained from NCBI and ExPASY database. Gene associations and interactions were predicted using GeneMANIA software. Deleterious and damaging effects of nsSNPs were analyzed using SIFT, Provean, and Polyphen-2. The association of the nsSNPs with the disease was predicted using SNPs & GO software. Protein stability was investigated using I-Mutant and MUpro software. The structural and functional impact of point mutations was predicted using Project Hope software. Project Hope analyzes the mutations according to their size, charge, hydrophobicity, and conservancy. Results: The GLP1R gene was found to have an association with 20 other different genes. Among the most important ones is the GCG (glucagon) gene which is also a trans membrane protein. Overall 7229 variants were seen, and the missense variants or nsSNPs (146) were selected for further analysis. The total number of nsSNPs obtained in this study was 146. After being subjected to SIFT software (27 Deleterious and 119 Tolerated) were predicted. Analysis with Provean showed that (20 deleterious and 7 neutral). Analysis using Polyphen-2 revealed 17 probably damaging, 2 possibly damaging and 1 benign nsSNPs. Using two additional software SNPs & GO and PHD-SNPs showed that 14 and 17 nsSNPs had a disease effect, respectively. Project Hope software predicts the effect of the 14 nsSNPs on the protein function due to differences in charge, size, hydrophobicity, and conservancy between the wild and mutant types. Conclusion: In this study, the 14 nsSNPs which were highly affected the protein function. This protein is providing the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes and also affect the treatment of diabetic patients due to the fact that the protein acts as an important drug target.展开更多
Protein 25a2 is the antifungal peptide of cotton Verticillium wilt which was isolated from Bacillus amyloliquefaciens. The amino acid sequence of antifungal peptide 25a2 was analyzed using bioinformatics tools, and th...Protein 25a2 is the antifungal peptide of cotton Verticillium wilt which was isolated from Bacillus amyloliquefaciens. The amino acid sequence of antifungal peptide 25a2 was analyzed using bioinformatics tools, and the characters of signal peptides, transmembrane topological structura, physicochemical signatures, protein domain, secondary and tertiary structure of protein were predicted. The results showed that 25a2 was a secreted protein, the sequence of which included a signal peptide in N end and a transmembrane domain in C end. The predicted secondary structure showed that the antibacterial peptide was mainly free random coils, belonging to mixed protein, three-dimensional model of 25a2 was a compact ball. These results showed that the most possible action mechanism of antifungal peptide 25a2 might be "carpet" model.展开更多
Objective To study the differences and similarities of the antisense drugs with different structures on the biological functions of HL60 cells. Methods Cytotoxic effects were measured by cell viability assay. The e...Objective To study the differences and similarities of the antisense drugs with different structures on the biological functions of HL60 cells. Methods Cytotoxic effects were measured by cell viability assay. The expression levels of protein were assayed by immunofluorescence using fluoresce isothiocyanate label. The morphological changes in apoptotic cells were observed. Flow cytometric analysis of DNA fragmentation was also performed. Results Antisense peptide nucleic acid (PNA) targeting the coding region of the Bcl-2 mRNA could effectively inhibit the growth of HL60 cells, down-regulate the synthesis of Bcl-2 protein and induce apoptosis. After HL60 cells were treated with 10 μmol/L Bcl-2 antisense PNA or antisense oligonucleotide for 72 h respectively, apoptotic rates of HL60 cells were 17.80±1.53 and 13.17±1.12, respectively( P <0.05). Conclusion Antisense PNA targeting the coding region of Bcl-2 mRNA may have stronger antisense effects than the antisense oligonucleotides and could induce apoptosis of HL60 cells.展开更多
There are many active substances in Atlantic cod(Gadus morhua)explaining the variety of biological activities.In order to study the immunomodulatory activity and the mechanism of Atlantic cod peptides at the cellular ...There are many active substances in Atlantic cod(Gadus morhua)explaining the variety of biological activities.In order to study the immunomodulatory activity and the mechanism of Atlantic cod peptides at the cellular level.In this study,cod peptides were isolated by 80%ethanol extraction method,the isolated ethanol-soluble cod peptides(CP-ES)were investigated and their immunomodulatory activity was verified.Additionally,CP-ES showed lower molecular weight and more hydrophobic amino acids.CP-ES could promote the proliferation of spleen lymphocytes and T lymphocytes in mice,suggesting that CP-ES may regulate adaptive immunity.It promoted the release of NO and the expression of iNOS,TNF-α,IL-6 and IL-1βgenes in macrophages,suggesting that CP-ES may regulate innate immunity.CP-ES could promote the expression of TLR2 gene,and the peptides identified in CP-ES were docked with TLR2 to predict the peptides playing a major role in CP-ES.These results suggested that CP-ES may regulate the immune activity of both innate and adaptive lines.展开更多
BACKGROUND Rapid urinary trypsinogen-2 dipstick test and levels of urinary trypsinogen-2 and trypsinogen activation peptide(TAP) concentration have been reported as prognostic markers for the diagnosis of acute pancre...BACKGROUND Rapid urinary trypsinogen-2 dipstick test and levels of urinary trypsinogen-2 and trypsinogen activation peptide(TAP) concentration have been reported as prognostic markers for the diagnosis of acute pancreatitis.AIM To reconfirm the validity of all these markers in the diagnosis of acute pancreatitis by undertaking a multi-center study in Japan.METHODS Patients with acute abdominal pain were recruited from 17 medical institutions in Japan from April 2009 to December 2012. Urinary and serum samples were collected twice, at enrollment and on the following day for measuring target markers. The diagnosis and severity assessment of acute pancreatitis were assessed based on prognostic factors and computed tomography(CT) Grade of the Japanese Ministry of Health, Labour, and Welfare criteria.RESULTS A total of 94 patients were enrolled during the study period. The trypsinogen-2 dipstick test was positive in 57 of 78 patients with acute pancreatitis(sensitivity,73.1%) and in 6 of 16 patients with abdominal pain but without any evidence of acute pancreatitis(specificity, 62.5%). The area under the curve(AUC) score of urinary trypsinogen-2 according to prognostic factors was 0.704, which was highest in all parameter. The AUC scores of urinary trypsinogen-2 and TAP according to CT Grade were 0.701 and 0.692, respectively, which shows higher than other pancreatic enzymes. The levels of urinary trypsinogen-2 and TAP were significantly higher in patients with extended extra-pancreatic inflammation as evaluated by CT Grade.CONCLUSION We reconfirmed urinary trypsinogen-2 dipstick test is useful as a marker for the diagnosis of acute pancreatitis. Urinary trypsinogen-2 and TAP may be considered as useful markers to determine extra-pancreatic inflammation in acute pancreatitis.展开更多
基金The project supported by National Natural Science Foundation of China(NSFC 21476054)the Natural Science Foundation of Heilongjiang Province(B201407)
文摘OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brain barrier(BBB).METHODS In the present study,dendrimer,polyamidoamine(PAMAM),was synthesized as the nano-drug carriers.Angiopep-2,which has been proved excellent ability to cross the BBB,was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethylene glycol(PEG).Then scutellarin(STA)was encapsulated into the functionalized nanoparticles(NPs)to formulate Angiopep-2 modified STA-loaded PEG-PAMAM NPs.Ischemic stroke model was established to evaluate the treatment efficacy and protective mechanism of Angiopep-2-STA-PEG-PAMAM NPs.RESULTS The pharmacokinetics and biodistribu-tion demonstrated that Angiopep-2-STA-PEG-PAMAM NPs exhibited significantly higher plasma concentration from 1 h to 10 h after intravenous administration and improve accumulation in brain(4.7-fold)compared with STA solution.Moreover,prolonged elimination half-life(4.8-fold)and lower clearance(3.4-fold)were observed.The brain uptake study of 6-coumarin confirmed that Angiopep-2-PEG-PAMAM NPs possessed better brain targeting efficacy(3.2-fold)than PEG-PAMAM NPs.Angiopep-2-STA-PEG-PAMAM NPs obviously ameliorated infarct volume,neurological deficit,histopathological severity and neuronal apoptosis.In addition,Angiopep-2-STA-PEG-PAMAM NPs markedly inhibited the calcium content and the levels of IL-12p40,IL-13,IL-17 and IL-23.Furthermore,Angiopep-2-STA-PEG-PAMAM NPs significantly decreased the m RNA and protein expressions of HMGB1,TLR2,TLR4,TLR5,My D88,TRIF,TRAM,IRAK-4,TRAF6,IкBα,IKKβand NF-кBp65.CONCLUSION The results suggested that Angiopep-2modified scutellarin-loaded PEG-PAMAM nanocarriers possessed remarkable neuroprotective effects on ischemic stroke through modulation of inflammatory cascades and HMGB1/TLRs/MyD 88-induced NF-κB activation pathways.
基金supported by the Major Project of Science and Technology Department of Yunnan Province (202002AA100005 and 202102AE090027-2)the Project of Yunnan Province Food and Drug Homologous Resources Functional Food Innovation Team (A3032023057)+2 种基金the YEFICRC project of Yunnan provincial key programs (2019ZG009)Yunnan Province Ten Thousand Plan Industrial Technology Talents project (YNWR-CYJS-2020-010)the Yunnan Provincial Department of Science and Technology Agricultural Joint Special Project (202101BD070001-120)。
文摘Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such peptides in WDPHs through a combination of in silico and in vitro analysis.In total,1262 peptide sequences were observed by nano liquid chromatography/tandem mass spectrometry(nano LC-MS/MS)and 4 novel COX-2 inhibitory peptides(AGFP,FPGA,LFPD,and VGFP)were identified.Enzyme kinetic data indicated that AGFP,FPGA,and LFPD displayed mixed-type COX-2 inhibition,whereas VGFP was a non-competitive inhibitor.This is mainly because the peptides form hydrogen bonds and hydrophobic interactions with residues in the COX-2 active site.These results demonstrate that computer analysis combined with in vitro evaluation allows for rapid screening of COX-2 inhibitory peptides in walnut protein dregs.
文摘This editorial is stimulated by the article by Alqifari et al published in the World Journal of Diabetes(2024).Alqifari et al focus on practical advice for the clinical use of glucagon-like-peptide-1(GLP-1)receptor agonists(GLP-1RAs)in the management of type 2 diabetes and this editorial provides complementary information.We initially give a brief historical perspective of the development of GLP-1RAs stimulated by recognition of the‘incretin effect’,the substantially greater insulin increase to enteral when compared to euglycaemic intravenous glucose,and the identification of the incretin hormones,GIP and GLP-1.In addition to stimulating insulin,GLP-1 reduces postprandial glucose levels by slowing gastric emptying.GLP-1RAs were developed because native GLP-1 has a very short plasma half-life.The majority of current GLP-1RAs are administered by subcutaneous injection once a week.They are potent in glucose lowering without leading to hypoglycaemia,stimulate weight loss in obese individuals and lead to cardiovascular and renal protection.The landscape in relation to GLP-1RAs is broadening rapidly,with different formulations and their combination with other peptides to facilitate both glucose lowering and weight loss.There is a need for more information relating to the effects of GLP-1RAs to induce gastrointestinal symptoms and slow gastric emptying which is likely to allow their use to become more effective and personalised.
文摘Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(20KJB550016)the National Natural Science Foundation of China(32101944)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Reactive oxygen species(ROS)-induced oxidative damage is strongly associated with the pathogenesis of chronic diseases,and natural antioxidant peptides have good abilities of scavenging ROS.The antioxidant activity of peptide Lys-Ser-Pro-Leu-Tyr(KSPLY)derived from Hericium erinaceus remains unclear.In the present study,the antioxidant effect and mechanism of KSPLY on H_(2)O_(2)-induced oxidative damage in HepG2 cells were investigated.The results indicated that KSPLY exhibited the antioxidant capacity in H_(2)O_(2)-induced HepG2 cells by enhancing superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT)activities.In comparison with the H_(2)O_(2)-treated damage group,the apoptosis rate,ROS level,and malondialdehyde(MDA)content of HepG2 cells treated with KSPLY were significantly decreased.The H.erinaceus-derived peptide KSPLY pretreatment promoted the expression of detoxification and antioxidant enzymes via the Keap1/Nrf2 signal pathway,thereby inhibiting the generation of ROS and MDA.In conclusion,the H.erinaceus-derived peptide KSPLY effectively protected HepG2 cells against H_(2)O_(2)-induced oxidative damage,and it provided a theoretical basis for the further development of new natural antioxidants.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金the National Natural Science Foundation of China(31971893,U2004144)the Key Technologies R&D Program of Henan Province(232102111080,212102110043)Academician Expert Workstation(202305AF150082).
文摘Mitochondrial protein translation that is essential for aerobic energy production includes four essential steps of the mitochondrial ribosome cycle,namely,initiation,elongation,termination of the polypeptide,and ribosome recycling.Translation termination initiates when a stop codon enters the A site of the mitochondrial ribosome where it is recognized by a dedicated peptide release factor(RF).However,RFs and mechanisms involved in translation in plant mitochondria,especially in monocotyledons,remain largely unknown.Here,we identified a crumpled kernel(crk5 allele)mutant,with significantly decreased kernel size,100-kernel weight,and an embryo-lethal phenotype.The Crk5 allele was isolated using map-based cloning and found to encode a mitochondrial localization RF2a.As it is an ortholog of Arabidopsis mitochondrial RF2a,we named the gene ZmmtRF2a.ZmmtRF2a is missing the 5th–7th exons in the crk5 resulting in deletion of domains containing motifs GGQ and SPF that are essential for release activity of RF,mitochondrial ribosome binding,and stop codon recognition.Western blot and qRT-PCR analyses indicate that the crk5 mutation results in abnormal mitochondrion structure and function.Intriguingly,we observed a feedback loop in the crk5 with up-regulated transcript levels detected for several mitochondrial ribosome and mitochondrial-related components,in particular mitochondrial complexes CI,CIV,and a ribosome assembly related PPR.Together,our data support a crucial role for ZmmtRF2a in regulation of mitochondrial structure and function in maize.
文摘BACKGROUND Microalbuminuria is an early and informative marker of diabetic nephropathy.Our study found that microalbuminuria developed in patients with newly diagnosed type 2 diabetes mellitus(T2DM).AIM To investigate the association between glucagon-like peptide 1(GLP-1)and microalbuminuria in newly diagnosed T2DM patients.METHODS In total,760 patients were recruited for this cross-sectional study.The GLP-1 levels during a standard meal test and urinary albumin-creatinine ratio(UACR)were determined.RESULTS Patients with microalbuminuria exhibited lower GLP-1 levels at 30 min and 120 min during a standard meal test than patients with normal albuminuria(30 min GLP-1,16.7±13.3 pmol vs 19.9±15.6 pmol,P=0.007;120 min GLP-1,16.0±14.1 pmol vs 18.4±13.8 pmol,P=0.037).The corresponding area under the curve for active GLP-1(AUCGLP-1)was also lower in microalbuminuria patients(2257,1585 to 3506 vs 2896,1763 to 4726,pmol×min,P=0.003).Postprandial GLP-1 levels at 30 min and 120 min and AUCGLP-1 were negatively correlated with the UACR(r=0.159,r=0.132,r=0.206,respectively,P<0.001).The prevalence of microalbuminuria in patients with newly diagnosed T2DM was 21.7%,which decreased with increasing quartiles of AUCGLP-1 levels(27.4%,25.3%,18.9%and 15.8%).After logistic regression analysis adjusted for sex,age,hemoglobin A1c,body mass index,systolic blood pressure,estimated glomerular filtration rate,homeostasis model assessment of insulin resistance,AUC_(glucose)and AUC_(glucagon)patients in quartile 4 of the AUCGLP-1 presented a lower risk of microalbuminuria compared with the patients in quartile 1(odds ratio=0.547,95%confidence interval:0.325-0.920,P=0.01).A consistent association was also found between 30 min GLP-1 or 120 min GLP-1 and microalbuminuria.CONCLUSION Postprandial GLP-1 levels were independently associated with microalbuminuria in newly diagnosed Chinese T2DM patients.
基金the State Key Laboratory of Pathogen and Biosecurity,No.SKLPBS2119 and SKLPBS2212the Medical Science Research Project of Dalian,No.2112015。
文摘BACKGROUND Formyl peptide receptor 2(Fpr2)is an important receptor in host resistance to bacterial infections.In previous studies,we found that the liver of Fpr2-/-mice is the most severely damaged target organ in bloodstream infections,although the reason for this is unclear.AIM To investigate the role of Fpr2 in liver homeostasis and host resistance to bacterial infections.METHODS Transcriptome sequencing was performed on the livers of Fpr2-/-and wild-type(WT)mice.Differentially expressed genes(DEGs)were identified in the Fpr2-/-and WT mice,and the biological functions of DEGs were analyzed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.Quantitative real time-polymerase chain reaction(qRT-PCR)and western blot(WB)analyses were used to further validate the expression levels of differential genes.Cell counting kit-8 assay was employed to investigate cell survival.The cell cycle detection kit was used to measure the distribution of cell cycles.The Luminex assay was used to analyze cytokine levels in the liver.The serum biochemical indices and the number of neutrophils in the liver were measured,and hepatic histopathological analysis was performed.RESULTS Compared with the WT group,445 DEGs,including 325 upregulated genes and 120 downregulated genes,were identified in the liver of Fpr2-/-mice.The enrichment analysis using GO and KEGG showed that these DEGs were mainly related to cell cycle.The qRT-PCR analysis confirmed that several key genes(CycA,CycB1,Cdc20,Cdc25c,and Cdk1)involved in the cell cycle had significant changes.The WB analysis confirmed a decrease in the expression of CDK1 protein.WRW4(an antagonist of Fpr2)could inhibit the proliferation of HepG2 cells in a concentration dependent manner,with an increase in the number of cells in the G0/G1 phase,and a decrease in the number of cells in the S phase.Serum alanine aminotransferase levels increased in Fpr2-/-mice.The Luminex assay measurements showed that interleukin(IL)-10 and chemokine(C-X-C motif)ligand(CXCL)-1 levels were significantly reduced in the liver of Fpr2-/-mice.There was no difference in the number of neutrophils,serum C-reactive protein levels,and liver pathology between WT and Fpr2-/-mice.CONCLUSION Fpr2 participates in the regulation of cell cycle and cell proliferation,and affects the expression of IL-10 and CXCL-1,thus playing an important protective role in maintaining liver homeostasis.
文摘Aim: This study aimed to investigate the effect of non-synonymous SNPs (nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein function and structure using different computational software. Introduction: The GLP1R gene provides the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes. The protein is an important drug target for the treatment of type-2 diabetes and stroke. Material and Methods: Different nsSNPs and protein-related sequences were obtained from NCBI and ExPASY database. Gene associations and interactions were predicted using GeneMANIA software. Deleterious and damaging effects of nsSNPs were analyzed using SIFT, Provean, and Polyphen-2. The association of the nsSNPs with the disease was predicted using SNPs & GO software. Protein stability was investigated using I-Mutant and MUpro software. The structural and functional impact of point mutations was predicted using Project Hope software. Project Hope analyzes the mutations according to their size, charge, hydrophobicity, and conservancy. Results: The GLP1R gene was found to have an association with 20 other different genes. Among the most important ones is the GCG (glucagon) gene which is also a trans membrane protein. Overall 7229 variants were seen, and the missense variants or nsSNPs (146) were selected for further analysis. The total number of nsSNPs obtained in this study was 146. After being subjected to SIFT software (27 Deleterious and 119 Tolerated) were predicted. Analysis with Provean showed that (20 deleterious and 7 neutral). Analysis using Polyphen-2 revealed 17 probably damaging, 2 possibly damaging and 1 benign nsSNPs. Using two additional software SNPs & GO and PHD-SNPs showed that 14 and 17 nsSNPs had a disease effect, respectively. Project Hope software predicts the effect of the 14 nsSNPs on the protein function due to differences in charge, size, hydrophobicity, and conservancy between the wild and mutant types. Conclusion: In this study, the 14 nsSNPs which were highly affected the protein function. This protein is providing the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes and also affect the treatment of diabetic patients due to the fact that the protein acts as an important drug target.
文摘Protein 25a2 is the antifungal peptide of cotton Verticillium wilt which was isolated from Bacillus amyloliquefaciens. The amino acid sequence of antifungal peptide 25a2 was analyzed using bioinformatics tools, and the characters of signal peptides, transmembrane topological structura, physicochemical signatures, protein domain, secondary and tertiary structure of protein were predicted. The results showed that 25a2 was a secreted protein, the sequence of which included a signal peptide in N end and a transmembrane domain in C end. The predicted secondary structure showed that the antibacterial peptide was mainly free random coils, belonging to mixed protein, three-dimensional model of 25a2 was a compact ball. These results showed that the most possible action mechanism of antifungal peptide 25a2 might be "carpet" model.
文摘Objective To study the differences and similarities of the antisense drugs with different structures on the biological functions of HL60 cells. Methods Cytotoxic effects were measured by cell viability assay. The expression levels of protein were assayed by immunofluorescence using fluoresce isothiocyanate label. The morphological changes in apoptotic cells were observed. Flow cytometric analysis of DNA fragmentation was also performed. Results Antisense peptide nucleic acid (PNA) targeting the coding region of the Bcl-2 mRNA could effectively inhibit the growth of HL60 cells, down-regulate the synthesis of Bcl-2 protein and induce apoptosis. After HL60 cells were treated with 10 μmol/L Bcl-2 antisense PNA or antisense oligonucleotide for 72 h respectively, apoptotic rates of HL60 cells were 17.80±1.53 and 13.17±1.12, respectively( P <0.05). Conclusion Antisense PNA targeting the coding region of Bcl-2 mRNA may have stronger antisense effects than the antisense oligonucleotides and could induce apoptosis of HL60 cells.
基金financially supported by the Project of Xingliao Talent Plan“Science and Technology Innovation Leader”(XLYC1802047).
文摘There are many active substances in Atlantic cod(Gadus morhua)explaining the variety of biological activities.In order to study the immunomodulatory activity and the mechanism of Atlantic cod peptides at the cellular level.In this study,cod peptides were isolated by 80%ethanol extraction method,the isolated ethanol-soluble cod peptides(CP-ES)were investigated and their immunomodulatory activity was verified.Additionally,CP-ES showed lower molecular weight and more hydrophobic amino acids.CP-ES could promote the proliferation of spleen lymphocytes and T lymphocytes in mice,suggesting that CP-ES may regulate adaptive immunity.It promoted the release of NO and the expression of iNOS,TNF-α,IL-6 and IL-1βgenes in macrophages,suggesting that CP-ES may regulate innate immunity.CP-ES could promote the expression of TLR2 gene,and the peptides identified in CP-ES were docked with TLR2 to predict the peptides playing a major role in CP-ES.These results suggested that CP-ES may regulate the immune activity of both innate and adaptive lines.
文摘BACKGROUND Rapid urinary trypsinogen-2 dipstick test and levels of urinary trypsinogen-2 and trypsinogen activation peptide(TAP) concentration have been reported as prognostic markers for the diagnosis of acute pancreatitis.AIM To reconfirm the validity of all these markers in the diagnosis of acute pancreatitis by undertaking a multi-center study in Japan.METHODS Patients with acute abdominal pain were recruited from 17 medical institutions in Japan from April 2009 to December 2012. Urinary and serum samples were collected twice, at enrollment and on the following day for measuring target markers. The diagnosis and severity assessment of acute pancreatitis were assessed based on prognostic factors and computed tomography(CT) Grade of the Japanese Ministry of Health, Labour, and Welfare criteria.RESULTS A total of 94 patients were enrolled during the study period. The trypsinogen-2 dipstick test was positive in 57 of 78 patients with acute pancreatitis(sensitivity,73.1%) and in 6 of 16 patients with abdominal pain but without any evidence of acute pancreatitis(specificity, 62.5%). The area under the curve(AUC) score of urinary trypsinogen-2 according to prognostic factors was 0.704, which was highest in all parameter. The AUC scores of urinary trypsinogen-2 and TAP according to CT Grade were 0.701 and 0.692, respectively, which shows higher than other pancreatic enzymes. The levels of urinary trypsinogen-2 and TAP were significantly higher in patients with extended extra-pancreatic inflammation as evaluated by CT Grade.CONCLUSION We reconfirmed urinary trypsinogen-2 dipstick test is useful as a marker for the diagnosis of acute pancreatitis. Urinary trypsinogen-2 and TAP may be considered as useful markers to determine extra-pancreatic inflammation in acute pancreatitis.