Gray mapping is a well-known way to improve the performance of regular constellation modulation,but it is challenging to be applied directly for irregular alternative.To address this issue,in this paper,a unified bit-...Gray mapping is a well-known way to improve the performance of regular constellation modulation,but it is challenging to be applied directly for irregular alternative.To address this issue,in this paper,a unified bit-to-symbol mapping method is designed for generalized constellation modulation(i.e.,regular and irregular shaping).The objective of the proposed approach is to minimize the average bit error probability by reducing the hamming distance(HD)of symbols with larger values of pairwise error probability.Simulation results show that the conventional constellation modulation(i.e.,phase shift keying and quadrature amplitude modulation(QAM)with the proposed mapping rule yield the same performance as that of classical gray mapping.Moreover,the recently developed golden angle modulation(GAM)with the proposed mapping method is capable of providing around1 d B gain over the conventional mapping counterpart and offers comparable performance to QAM with Gray mapping.展开更多
Previous studies on modulation instabilities(MIs) in birefringent optical fibers focus on the ordinary linearly and circularly ones. This paper reports an analysis of MIs in the general elliptically birefringent fib...Previous studies on modulation instabilities(MIs) in birefringent optical fibers focus on the ordinary linearly and circularly ones. This paper reports an analysis of MIs in the general elliptically birefringent fibers with the emphasis on investigating the effects of ellipticity angle(0? ≤θ≤ 90?). Both symmetric and antisymmetric CW states are considered. In the anomalous dispersion regime, for the symmetric(antisymmetric) CW states, we show that MI gain increases dramatically(reduces first and then enhances greatly) as the increment of θ. In the normal dispersion regime, for the both CW states, the distinctive feature is that the gain of the MI bands reduces first, vanishes at θ = 45?,reappears across this ellipticity angle, and quickly increases after then.展开更多
The phase modulation characteristics of a reflective liquid crystal (LC) spatial light modulator (SLM) under oblique incidence are studied by using our proposed self-interference method. The experimental setup of ...The phase modulation characteristics of a reflective liquid crystal (LC) spatial light modulator (SLM) under oblique incidence are studied by using our proposed self-interference method. The experimental setup of the method is very simple and has good robustness to mechanical vibrations. By changing the gray value of the combined grayscale loaded on the LC-SLM, different sheared fringe patterns, generated by the interference between the constant phase-modulated beam and the +1-order diffracted beam of the blazed grating, can be obtained. The amount of phase modulation of the LC-SLM is obtained by subtracting the phase of the two side lobes in the frequency domain. By turning the turntable where the SLM is mounted, the phase modulation characteristics at different incident angles can be measured. The experimental results show that the phase modulation curves do not change significantly with the small angle. When the angle is large (i.e. larger than 10°), the phase modulation curves become different, especially for the high gray levels. With the increase of the incident angle, the phase modulation depth is reduced. The results indicate that the incident angle plays an important role in the performance of the phase modulation of an LC-SLM.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900502in part by the National Science Foundation of China under Grant 62001179in part by the Fundamental Research Funds for the Central Universities under Grant 2020kfy XJJS111。
文摘Gray mapping is a well-known way to improve the performance of regular constellation modulation,but it is challenging to be applied directly for irregular alternative.To address this issue,in this paper,a unified bit-to-symbol mapping method is designed for generalized constellation modulation(i.e.,regular and irregular shaping).The objective of the proposed approach is to minimize the average bit error probability by reducing the hamming distance(HD)of symbols with larger values of pairwise error probability.Simulation results show that the conventional constellation modulation(i.e.,phase shift keying and quadrature amplitude modulation(QAM)with the proposed mapping rule yield the same performance as that of classical gray mapping.Moreover,the recently developed golden angle modulation(GAM)with the proposed mapping method is capable of providing around1 d B gain over the conventional mapping counterpart and offers comparable performance to QAM with Gray mapping.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11447113 and 11305031 Natural Science Foundation of Jiangsu Provincial Universities under Grant No.14KJB140009 the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology under Grant No.2241131301064
文摘Previous studies on modulation instabilities(MIs) in birefringent optical fibers focus on the ordinary linearly and circularly ones. This paper reports an analysis of MIs in the general elliptically birefringent fibers with the emphasis on investigating the effects of ellipticity angle(0? ≤θ≤ 90?). Both symmetric and antisymmetric CW states are considered. In the anomalous dispersion regime, for the symmetric(antisymmetric) CW states, we show that MI gain increases dramatically(reduces first and then enhances greatly) as the increment of θ. In the normal dispersion regime, for the both CW states, the distinctive feature is that the gain of the MI bands reduces first, vanishes at θ = 45?,reappears across this ellipticity angle, and quickly increases after then.
基金financially supported by the National Natural Science Foundation of China(No.51705404)the China Postdoctoral Science Foundation(No.2016M602806)the Fundamental Research Funds for the Central Universities(No.xjj2017093)
文摘The phase modulation characteristics of a reflective liquid crystal (LC) spatial light modulator (SLM) under oblique incidence are studied by using our proposed self-interference method. The experimental setup of the method is very simple and has good robustness to mechanical vibrations. By changing the gray value of the combined grayscale loaded on the LC-SLM, different sheared fringe patterns, generated by the interference between the constant phase-modulated beam and the +1-order diffracted beam of the blazed grating, can be obtained. The amount of phase modulation of the LC-SLM is obtained by subtracting the phase of the two side lobes in the frequency domain. By turning the turntable where the SLM is mounted, the phase modulation characteristics at different incident angles can be measured. The experimental results show that the phase modulation curves do not change significantly with the small angle. When the angle is large (i.e. larger than 10°), the phase modulation curves become different, especially for the high gray levels. With the increase of the incident angle, the phase modulation depth is reduced. The results indicate that the incident angle plays an important role in the performance of the phase modulation of an LC-SLM.