期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Single-cell analysis reveals an Angpt4-initiated EPDC-EC-CM cellular coordination cascade during heart regeneration
1
作者 Zekai Wu Yuan Shi +15 位作者 Yueli Cui Xin Xing Liya Zhang Da Liu Yutian Zhang Ji Dong Li Jin Meijun Pang Rui-Ping Xiao Zuoyan Zhu Jing-Wei Xiong Xiangjun Tong Yan Zhang Shiqiang Wang Fuchou Tang Bo Zhang 《Protein & Cell》 SCIE CSCD 2023年第5期350-368,共19页
Mammals exhibit limited heart regeneration ability,which can lead to heart failure after myocardial infarction.In contrast,zebrafish exhibit remarkable cardiac regeneration capacity.Several cell types and signaling pa... Mammals exhibit limited heart regeneration ability,which can lead to heart failure after myocardial infarction.In contrast,zebrafish exhibit remarkable cardiac regeneration capacity.Several cell types and signaling pathways have been reported to participate in this process.However,a comprehensive analysis of how different cells and signals interact and coordinate to regulate cardiac regeneration is unavailable.We collected major cardiac cell types from zebrafish and performed high-precision single-cell transcriptome analyses during both development and post-injury regeneration.We revealed the cellular heterogeneity as well as the molecular progress of cardiomyocytes during these processes,and identified a subtype of atrial cardiomyocyte exhibiting a stem-like state which may transdifferentiate into ventricular cardiomyocytes during regeneration.Furthermore,we identified a regeneration-induced cell(RIC)population in the epicardium-derived cells(EPDC),and demonstrated Angiopoietin 4(Angpt4)as a specific regulator of heart regeneration.angpt4 expression is specifically and transiently activated in RIC,which initiates a signaling cascade from EPDC to endocardium through the Tie2-MAPK pathway,and further induces activation of cathepsin K in cardiomyocytes through RA signaling.Loss of angpt4 leads to defects in scar tissue resolution and cardiomyocyte proliferation,while overexpression of angpt4 accelerates regeneration.Furthermore,we found that ANGPT4 could enhance proliferation of neonatal rat cardiomyocytes,and promote cardiac repair in mice after myocardial infarction,indicating that the function of Angpt4 is conserved in mammals.Our study provides a mechanistic understanding of heart regeneration at single-cell precision,identifies Angpt4 as a key regulator of cardiomyocyte proliferation and regeneration,and offers a novel therapeutic target for improved recovery after human heart injuries. 展开更多
关键词 scRNA-seq ZEBRAFISH heart regeneration angpt4 EPDC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部