The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f^76p_(1/2)nd auto-ionizing states are investigated with the velocity-map-imaging technique.To populate the above auto-ion...The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f^76p_(1/2)nd auto-ionizing states are investigated with the velocity-map-imaging technique.To populate the above auto-ionizing states,the relevant bound Rydberg states have to be detected first.Two new bound Rydberg states are identified in the region between41150 cm^(-1)and 44580 cm^(-1),from which auto-ionization spectra of the Eu 4f^76p_(1/2)nd states are observed with isolated core excitation method.With all preparations above,the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically.Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed,followed by a qualitative interpretation.展开更多
Quasiclassical trajectory calculation of the title reaction O(^3P)+H2→OH+H at three different scattering energies of 0.5, 0.75, and 1.0 eV on the lowest electronic potential energy surface 1^3A" has been done. D...Quasiclassical trajectory calculation of the title reaction O(^3P)+H2→OH+H at three different scattering energies of 0.5, 0.75, and 1.0 eV on the lowest electronic potential energy surface 1^3A" has been done. Distribution P(θr) of polar angles between the relative velocityk of the reactant and rotational angular momentum vector j' of the product, distribution P(φr) of the azimuthal as well as dihedral angles correlating k-k'-j', 3-dimensional distri-bution, and polarization-dependent differential cross sections (PDDCSs)dependent upon the scattering angle of the product molecule OH between the relative velocity k of the reactant and k' of the product at different scattering energies of 0.5, 0.75, and 1.0 eV are presented and discussed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11174218)
文摘The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f^76p_(1/2)nd auto-ionizing states are investigated with the velocity-map-imaging technique.To populate the above auto-ionizing states,the relevant bound Rydberg states have to be detected first.Two new bound Rydberg states are identified in the region between41150 cm^(-1)and 44580 cm^(-1),from which auto-ionization spectra of the Eu 4f^76p_(1/2)nd states are observed with isolated core excitation method.With all preparations above,the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically.Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed,followed by a qualitative interpretation.
文摘Quasiclassical trajectory calculation of the title reaction O(^3P)+H2→OH+H at three different scattering energies of 0.5, 0.75, and 1.0 eV on the lowest electronic potential energy surface 1^3A" has been done. Distribution P(θr) of polar angles between the relative velocityk of the reactant and rotational angular momentum vector j' of the product, distribution P(φr) of the azimuthal as well as dihedral angles correlating k-k'-j', 3-dimensional distri-bution, and polarization-dependent differential cross sections (PDDCSs)dependent upon the scattering angle of the product molecule OH between the relative velocity k of the reactant and k' of the product at different scattering energies of 0.5, 0.75, and 1.0 eV are presented and discussed.