Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co...Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.展开更多
In this paper, a new type of pumped-storage power station with faster response speed, wider regulation range, and better stability is proposed. The operational flexible of the traditional pumped-storage power station ...In this paper, a new type of pumped-storage power station with faster response speed, wider regulation range, and better stability is proposed. The operational flexible of the traditional pumped-storage power station can be improved with variable-speed pumped-storage tech no logy. Combined with chemical en ergy storage, the failure to achieve sec on d-order response speed and the insufficient safety and reliability of pumped-storage power units could be solved. With the better solar en ergy and site resources, the in teg rated performance can be improved by an optical storage system in stalled in future pumped-storage stations. Through the characteristics analysis of the new type of pumped-storage power station, three types of optimal station locations are proposed, namely, the load concentration area, new energy concentration area, and ultrahigh- voltage direct current receiver area. Taking the new pumped-storage power station as an example, the advantages of multi-energy cooperation and joint operation are analyzed. It can be predicted that the frequency and load regulation of the power grid will be more flexible, and the service capacity to the main power grid will be much stronger in the future.展开更多
The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode...The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.展开更多
This paper proposes a novel method to calculate the best installed capacity of pumped storage power station. First, we choose the day with maximum load as the typical day for every month and simulate the system runnin...This paper proposes a novel method to calculate the best installed capacity of pumped storage power station. First, we choose the day with maximum load as the typical day for every month and simulate the system running in two cases of whether the pumped storage power station is put into operation. The difference of the total coal consumption between the two cases is the peak load shifting benefit. Furthermore, we build load model and power generation model to calculate the benefit of emergency use and frequency modulation, which are the major projects of dynamic benefits. At last, on the premise of ensuring the system requirements, the developed method employs the maximum benefit of the unit capacity as the objective function to get the best installed capacity of pumped storage power station by simulations. Tests on a provincial power grid have shown that the developed method which combines of load characteristics, electric structure and other factors can get the best installed capacity of pumped storage power station easily and has a certain guiding significance for the planning and construction of the pumped storage power station.展开更多
This paper made a research on the Intelligent Optimization Operating Modeling of Pumped Storage Power Station in Hunan Power Grid. First it introduces the characteristics of Hunan power grid and analysis the practical...This paper made a research on the Intelligent Optimization Operating Modeling of Pumped Storage Power Station in Hunan Power Grid. First it introduces the characteristics of Hunan power grid and analysis the practical requirement of dispatching. Then it brings forward the intelligent optimization model and set up running model for pumped storage power station of Hei Mi-feng. At last, it introduces the application of pumped storage power station in Hunan power grid and proves the effectiveness of the optimization models.展开更多
With the establishment of “carbon peaking and carbon neutrality” goals in China, along with the development of new power systems and ongoing electricity market reforms, pumped-storage power stations (PSPSs) will inc...With the establishment of “carbon peaking and carbon neutrality” goals in China, along with the development of new power systems and ongoing electricity market reforms, pumped-storage power stations (PSPSs) will increasingly play a significant role in power systems. Therefore, this study focuses on trading and bidding strategies for PSPSs in the electricity market. Firstly, a comprehensive framework for PSPSs participating in the electricity energy and frequency regulation (FR) ancillary service market is proposed. Subsequently, a two-layer trading model is developed to achieve joint clearing in the energy and frequency regulation markets. The upper-layer model aims to maximize the revenue of the power station by optimizing the bidding strategies using a Q-learning algorithm. The lower-layer model minimized the total electricity purchasing cost of the system. Finally, the proposed bi-level trading model is validated by studying an actual case in which data are obtained from a provincial power system in China. The results indicate that through this decision-making method, PSPSs can achieve higher economic revenue in the market, which will provide a reference for the planning and operation of PSPSs.展开更多
针对监测抽水蓄能电站发电电动机运行数据存在冗余问题,致使存储数据延迟时间长,提出基于区块链的抽水蓄能电站发电电动机运行监测数据存储方法,通过存储数据身份验证维护存储数据安全。数据层运用数据采集平台获取抽水蓄能电站发电电...针对监测抽水蓄能电站发电电动机运行数据存在冗余问题,致使存储数据延迟时间长,提出基于区块链的抽水蓄能电站发电电动机运行监测数据存储方法,通过存储数据身份验证维护存储数据安全。数据层运用数据采集平台获取抽水蓄能电站发电电动机运行监测数据,采用变更数据捕获(change data capture,CDC)算法消除采集数据冗余,并通过发送终端将消冗后数据传输至分布式存储层;分布式存储层的区块链按时间戳的顺序确定数据区块的存储顺序,通过身份注册验证待上传的数据身份;分布式存储数据库采用HBase技术对通过身份验证数据进行多维排序映射存储;通过应用层客户端展示存储结果并提供数据共享服务。实验结果表明:该方法的数据消冗效果较好,可实现电动机运行监测数据存储,且存储数据延迟时间短,上传数据时的身份注册开销比较稳定,可保障存储数据安全。展开更多
基金funded by the BeijingNatural Science Foundation of China(8222003)National Natural Science Foundation of China(41807180).
文摘Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.
基金supported by the State Grid Science and Technology Project(No.SGZJ0000KXJS1800313/Title 1:Research on Key Technologies Engineering Application of Large Variable Speed Pumped Storage UnitNo.SGTYHT/17-JS-199/Title 2:Study on Transient Characteristics Analysis of Variable Speed Pumped Storage Unit and Coordination Control Technology of Network Source)
文摘In this paper, a new type of pumped-storage power station with faster response speed, wider regulation range, and better stability is proposed. The operational flexible of the traditional pumped-storage power station can be improved with variable-speed pumped-storage tech no logy. Combined with chemical en ergy storage, the failure to achieve sec on d-order response speed and the insufficient safety and reliability of pumped-storage power units could be solved. With the better solar en ergy and site resources, the in teg rated performance can be improved by an optical storage system in stalled in future pumped-storage stations. Through the characteristics analysis of the new type of pumped-storage power station, three types of optimal station locations are proposed, namely, the load concentration area, new energy concentration area, and ultrahigh- voltage direct current receiver area. Taking the new pumped-storage power station as an example, the advantages of multi-energy cooperation and joint operation are analyzed. It can be predicted that the frequency and load regulation of the power grid will be more flexible, and the service capacity to the main power grid will be much stronger in the future.
基金funded by the Project “Resource Characteristics of Main Watersheds and Key Issues in Development and Utilization of Hydroelectricity in South America and Africa”the National Science Foundation of China (U1766201)
文摘The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.
文摘This paper proposes a novel method to calculate the best installed capacity of pumped storage power station. First, we choose the day with maximum load as the typical day for every month and simulate the system running in two cases of whether the pumped storage power station is put into operation. The difference of the total coal consumption between the two cases is the peak load shifting benefit. Furthermore, we build load model and power generation model to calculate the benefit of emergency use and frequency modulation, which are the major projects of dynamic benefits. At last, on the premise of ensuring the system requirements, the developed method employs the maximum benefit of the unit capacity as the objective function to get the best installed capacity of pumped storage power station by simulations. Tests on a provincial power grid have shown that the developed method which combines of load characteristics, electric structure and other factors can get the best installed capacity of pumped storage power station easily and has a certain guiding significance for the planning and construction of the pumped storage power station.
文摘This paper made a research on the Intelligent Optimization Operating Modeling of Pumped Storage Power Station in Hunan Power Grid. First it introduces the characteristics of Hunan power grid and analysis the practical requirement of dispatching. Then it brings forward the intelligent optimization model and set up running model for pumped storage power station of Hei Mi-feng. At last, it introduces the application of pumped storage power station in Hunan power grid and proves the effectiveness of the optimization models.
基金Supported by the Innovation Project of the China Southern Power Grid Co.,Ltd.(020000KK52210005).
文摘With the establishment of “carbon peaking and carbon neutrality” goals in China, along with the development of new power systems and ongoing electricity market reforms, pumped-storage power stations (PSPSs) will increasingly play a significant role in power systems. Therefore, this study focuses on trading and bidding strategies for PSPSs in the electricity market. Firstly, a comprehensive framework for PSPSs participating in the electricity energy and frequency regulation (FR) ancillary service market is proposed. Subsequently, a two-layer trading model is developed to achieve joint clearing in the energy and frequency regulation markets. The upper-layer model aims to maximize the revenue of the power station by optimizing the bidding strategies using a Q-learning algorithm. The lower-layer model minimized the total electricity purchasing cost of the system. Finally, the proposed bi-level trading model is validated by studying an actual case in which data are obtained from a provincial power system in China. The results indicate that through this decision-making method, PSPSs can achieve higher economic revenue in the market, which will provide a reference for the planning and operation of PSPSs.
文摘针对监测抽水蓄能电站发电电动机运行数据存在冗余问题,致使存储数据延迟时间长,提出基于区块链的抽水蓄能电站发电电动机运行监测数据存储方法,通过存储数据身份验证维护存储数据安全。数据层运用数据采集平台获取抽水蓄能电站发电电动机运行监测数据,采用变更数据捕获(change data capture,CDC)算法消除采集数据冗余,并通过发送终端将消冗后数据传输至分布式存储层;分布式存储层的区块链按时间戳的顺序确定数据区块的存储顺序,通过身份注册验证待上传的数据身份;分布式存储数据库采用HBase技术对通过身份验证数据进行多维排序映射存储;通过应用层客户端展示存储结果并提供数据共享服务。实验结果表明:该方法的数据消冗效果较好,可实现电动机运行监测数据存储,且存储数据延迟时间短,上传数据时的身份注册开销比较稳定,可保障存储数据安全。