[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method]...[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.展开更多
Fluvial landforms in the Anhui section of the Changjiang(Yangtze)River are often considered as the main factors for frequent floods.It is these special landforms that influence the channel changes of the Changjiang Ri...Fluvial landforms in the Anhui section of the Changjiang(Yangtze)River are often considered as the main factors for frequent floods.It is these special landforms that influence the channel changes of the Changjiang River.Using Landsat TM image of 2000,this paper conducted a series of image processing,including principal component analysis,multi-spectral composition,gray value statistics,and spectral analysis of ground objects.Then it got a new interpretation map of different kinds of fluvial landforms of the Changjiang River in the Anhui section.Based on the interpretation mentioned above,the paper analyzes the distribution and characteristics of such typical landforms as terraces,floodplains and battures,and their functions on the changes of river channel.The results show a consistence with the earlier conclusion that the Anhui section of the Changjiang River tends to deflect gradually toward south,which provides more implications for further study on the geomorphologic evolution of the river channel.展开更多
基金Supported by Meteorological Open Research Fund of Huaihe River basin,China(HRM200805)Soft Science Research Plan of Ministry of Science and Technology,China(2007GXS3D087)
文摘[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.
基金Under the auspices of the Geological Survey Funds of Chinese Geological Survey(No.199916000111)
文摘Fluvial landforms in the Anhui section of the Changjiang(Yangtze)River are often considered as the main factors for frequent floods.It is these special landforms that influence the channel changes of the Changjiang River.Using Landsat TM image of 2000,this paper conducted a series of image processing,including principal component analysis,multi-spectral composition,gray value statistics,and spectral analysis of ground objects.Then it got a new interpretation map of different kinds of fluvial landforms of the Changjiang River in the Anhui section.Based on the interpretation mentioned above,the paper analyzes the distribution and characteristics of such typical landforms as terraces,floodplains and battures,and their functions on the changes of river channel.The results show a consistence with the earlier conclusion that the Anhui section of the Changjiang River tends to deflect gradually toward south,which provides more implications for further study on the geomorphologic evolution of the river channel.