The increasing incidence and mortality associated with advanced stages of melanoma are cause for concern. Few treatment options are available for advanced melanoma and the 5-year survival rate is less than 15%. Target...The increasing incidence and mortality associated with advanced stages of melanoma are cause for concern. Few treatment options are available for advanced melanoma and the 5-year survival rate is less than 15%. Targeted therapies may revolutionize melanoma treatment by providing less toxic and more effective strategies. However, maximizing effectiveness requires further understanding of the molecular alterations that drive tumor formation, progression, and maintenance, as well as elucidating the mechanisms of resistance. Several different genetic alterations identified in human melanoma have been recapitulated in mice. This review outlines recent progress made in the development of mouse models of melanoma and summarizes what these findings reveal about the human disease. We begin with a discussion of traditional models and conclude with the recently developed RCAS/TVA somatic cell gene delivery mouse model of melanoma.展开更多
Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poo...Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poorly understood,as it involves complex mechanisms that result in the same outcome.Consequently,researchers are interested in studying KOA and require appropriate animal models for basic research.Chinese herbal compounds,which consist of multiple herbs with diverse pharmacological properties,possess characteristics such as multicomponent,multipathway,and multitarget effects.The potential benefits in the treatment of KOA continue to attract attention.Purpose:This study aims to provide a comprehensive overview of the advantages,limitations,and specific considerations in selecting different species and methods for KOA animal models.This will help researchers make informed decisions when choosing an animal model.Methods:Online academic databases(e.g.,PubMed,Google Scholar,Web of Science,and CNKI)were searched using the search terms“knee osteoarthritis,”“animal models,”“traditional Chinese medicine,”and their combinations,primarily including KOA studies published from 2010 to 2023.Results:Based on literature retrieval,this review provides a comprehensive overview of the methods of establishing KOA animal models;introduces the current status of advantages and disadvantages of various animal models,including mice,rats,rabbits,dogs,and sheep/goats;and presents the current status of methods used to establish KOA animal models.Conclusion:This study provides a review of the animal models used in recent KOA research,discusses the common modeling methods,and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.展开更多
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole...The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.展开更多
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly inve...Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.展开更多
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the i...Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.展开更多
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie...Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.展开更多
BACKGROUND Prevalence of hepatocellular carcinoma(HCC)is increasing,especially in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD).AIM To investigate rifaximin(RIF)effects on epigenetic/aut...BACKGROUND Prevalence of hepatocellular carcinoma(HCC)is increasing,especially in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD).AIM To investigate rifaximin(RIF)effects on epigenetic/autophagy markers in animals.METHODS Adult Sprague-Dawley rats were randomly assigned(n=8,each)and treated from 5-16 wk:Control[standard diet,water plus gavage with vehicle(Veh)],HCC[high-fat choline deficient diet(HFCD),diethylnitrosamine(DEN)in drinking water and Veh gavage],and RIF[HFCD,DEN and RIF(50 mg/kg/d)gavage].Gene expression of epigenetic/autophagy markers and circulating miRNAs were obtained.RESULTS All HCC and RIF animals developed metabolic-dysfunction associated steatohepatitis fibrosis,and cirrhosis,but three RIF-group did not develop HCC.Comparing animals who developed HCC with those who did not,miR-122,miR-34a,tubulin alpha-1c(Tuba-1c),metalloproteinases-2(Mmp2),and metalloproteinases-9(Mmp9)were significantly higher in the HCC-group.The opposite occurred with Becn1,coactivator associated arginine methyltransferase-1(Carm1),enhancer of zeste homolog-2(Ezh2),autophagy-related factor LC3A/B(Map1 Lc3b),and p62/sequestosome-1(p62/SQSTM1)-protein.Comparing with controls,Map1 Lc3b,Becn1 and Ezh2 were lower in HCC and RIF-groups(P<0.05).Carm1 was lower in HCC compared to RIF(P<0.05).Hepatic expression of Mmp9 was higher in HCC in relation to the control;the opposite was observed for p62/Sqstm1(P<0.05).Expression of p62/SQSTM1 protein was lower in the RIF-group compared to the control(P=0.024).There was no difference among groups for Tuba-1c,Aldolase-B,alpha-fetoprotein,and Mmp2(P>0.05).miR-122 was higher in HCC,and miR-34a in RIF compared to controls(P<0.05).miR-26b was lower in HCC compared to RIF,and the inverse was observed for miR-224(P<0.05).There was no difference among groups regarding miR-33a,miR-143,miR-155,miR-375 and miR-21(P>0.05).CONCLUSION RIF might have a possible beneficial effect on preventing/delaying liver carcinogenesis through epigenetic modulation in a rat model of MASLD-HCC.展开更多
Hepatitis E virus(HEV)is one of the leading causes of acute viral hepatitis worldwide.Although most of HEV infections are asymptomatic,some patients will develop the symptoms,especially pregnant women,the elderly,and ...Hepatitis E virus(HEV)is one of the leading causes of acute viral hepatitis worldwide.Although most of HEV infections are asymptomatic,some patients will develop the symptoms,especially pregnant women,the elderly,and patients with preexisting liver diseases,who often experience anorexia,nausea,vom-iting,malaise,abdominal pain,and jaundice.HEV infection may become chronic in immunosuppressed individuals.In addition,HEV infection can also cause several extrahepatic manifestations.HEV exists in a wide range of hosts in nature and can be transmitted across species.Hence,animals susceptible to HEV can be used as models.The establishment of animal models is of great significance for studying HEV transmission,clinical symptoms,extrahepatic manifestations,and therapeutic strategies,which will help us understand the pathogenesis,prevention,and treatment of hepatitis E.This review summarized the animal models of HEV,including pigs,monkeys,rabbits,mice,rats,and other animals.For each animal species,we provided a concise summary of the HEV genotypes that they can be infected with,the cross-species transmission pathways,as well as their role in studying extrahepatic manifestations,prevention,and treatment of HEV infection.The advantages and disadvantages of these animal models were also emphasized.This review offers new perspectives to enhance the current understanding of the research landscape surrounding HEV animal models.展开更多
Tendon calcification is a common clinical condition that frequently occurs as a complication after tendon injury and surgery,or as an expression of fibrodysplasia ossificans progressiva.This condition can be referred ...Tendon calcification is a common clinical condition that frequently occurs as a complication after tendon injury and surgery,or as an expression of fibrodysplasia ossificans progressiva.This condition can be referred to by various names in clinical practice and literature,including tendon ossification,tendon mineralization,heterotopic ossification,and calcific tendonitis.The exact pathogenesis of tendon calcification remains uncertain,but current mainstream research suggests that calcification is mostly cell mediated.To further elucidate the pathogenesis of tendon calcification and to better simulate the overall process,selecting appropriate experimental animal models is important.Numerous animal models have been utilized in various clinical studies,each with its own set of advantages and limitations.In this review,we have discussed the advancements made in research on animal models of tendon calcification,with a focus on the selection of experimental animals,the sites of injury in these models,and the methods employed for modeling.展开更多
Animal models constructed using pathogenic factors have significantly advanced drug development for Alzheimer's disease(AD).These predominantly transgenic models,mainly in mice,replicate pathological phenotypes th...Animal models constructed using pathogenic factors have significantly advanced drug development for Alzheimer's disease(AD).These predominantly transgenic models,mainly in mice,replicate pathological phenotypes through gene mutations associated with familial AD cases,thus serving as vital tools for assessing drug efficacy and for performing mechanistic studies.However,the speciesspecific differences and complex,heterogeneous nature of AD etiology pose considerable challenges for the translatability of these animal models,limiting their utility in drug development.This review offers a comprehensive analysis of widely employed rodent(mice and rats)and non-rodent models(Danio rerio(zebrafish),Drosophila melanogaster,and Caenorhabditis elegans),detailing their phenotypic features and specific research applications.This review also examines the limitations inherent in these models and introduces various strategies for expanding AD modeling across diverse species,emphasizing recent advancement in non-human primates(NHPs)as valuable models.Furthermore,potential insights from the integration of innovative technologies in AD research are discussed,while providing valuable perspectives on the future development of AD animal models.展开更多
Stroke is a major cause of death and disability worldwide,with the majority of cases resulting from ischemic events due to arterial occlusion.Current therapeutic approaches focus on rapid reperfusion through intraveno...Stroke is a major cause of death and disability worldwide,with the majority of cases resulting from ischemic events due to arterial occlusion.Current therapeutic approaches focus on rapid reperfusion through intravenous thrombolysis and intravascular thrombectomy.Although these interventions can mitigate long-term disability,reperfusion itself may induce neuronal injury.The exact mechanisms underlying neuronal damage following cerebral ischemia have yet to be reported.Recent research suggests that ferroptosis may play a significant role in post-ischemic neuronal death,which can be targeted to prevent neuronal loss.This review explores the three essential hallmarks of ferroptosis:the presence of redox-active iron,the peroxidation of polyunsaturated fatty acid-containing phospholipids,and the loss of lipid peroxide repair capacity.The involvement of ferroptosis in neuronal injury following ischemic stroke is also explored,along with an overview of ferroptosis-associated changes in different ischemic stroke animal models.Furthermore,recent therapeutic interventions targeting the ferroptosis pathway,as well as the opportunities,difficulties,and future directions of ferroptosis-targeted therapies in ischemic stroke,are discussed.展开更多
Vector-borne diseases caused by arthropod-borne viruses(arboviruses) are a considerable challenge to public health globally. Mosquito-borne arboviruses, such as Chikungunya, Dengue, and Zika viruses, cause a range of ...Vector-borne diseases caused by arthropod-borne viruses(arboviruses) are a considerable challenge to public health globally. Mosquito-borne arboviruses, such as Chikungunya, Dengue, and Zika viruses, cause a range of human illnesses and may be fatal. Currently, efforts to control these diseases still face challenges due to growing vector resistance towards insecticides, urbanization, and limited effective antiviral treatments and vaccines. Animal models are crucial in antiviral research on mosquito-borne arboviruses, playing a role in understanding disease mechanisms,vaccine development, and toxicity testing, but the application of animal models still faces the challenges of ethical considerations and animal-to-human translational success. Genetically engineered mouse models, hamster models and non-human primate(NHP) are currently used in arbovirus research, but new models such as tree shrews and novel humanized mice are emerging. In the context of Malaysian research, the use of long-tailed macaques as potential NHP models for arbovirus research is possible;however, it faces the ethical dilemma of using an endangered species for scientific purposes. Overall, animal models play a crucial role in advancing infectious disease research, but a balance between medical research and species conservation must be upheld.展开更多
BACKGROUND Chronic biliary disease,including cholangitis and cholecystitis,is attributed to ascending infection by intestinal bacteria.Development of a mouse model for bile duct inflammation is imperative for the adva...BACKGROUND Chronic biliary disease,including cholangitis and cholecystitis,is attributed to ascending infection by intestinal bacteria.Development of a mouse model for bile duct inflammation is imperative for the advancement of novel therapeutic approaches.Current models fail to replicate the harmful bacterial influx to the biliary tract observed in humans and spread of inflammation to the liver.Therefore,we aimed to establish an animal model of biliary disease that faithfully replicates the mechanisms of human diseases.AIM To establish a cholecystoduodenal anastomosis model capable of mimicking the mechanisms of ascending infection and inflammation observed in human biliary diseases.METHODS We established a mouse biliary disease model by directly connecting the gallbladder and duodenum,enabling ascending infection into the biliary tract without traversing the sphincter of Oddi.RESULTS In the cholecystoduodenal anastomosis mouse model,we observed impaired epithelial structure,wall thickening,and macrophage recruitment in the gallbladder.Despite the absence of postoperative antibiotics,we detected no changes in serum proinflammatory cytokine levels,indicating no systemic inflammation.Moreover,patency between the gallbladder and duodenum was confirmed via common bile duct ligation.Injection of patient-derived pathogenic bacteria into bile duct-ligated mice led to ascending infection,which significantly increased proinflammatory cytokine mRNA expression in the liver,duodenum,and ileum.These results indicate that our mouse model exhibited a direct connection between the gallbladder and duodenum,leading to ascending infection and closely mimicking the clinical features of biliary diseases observed in humans.CONCLUSION The cholecystoduodenal anastomosis mouse model is an effective chronic biliary disease model with significant relevance in the development of microbiome-based therapies for the prevention and treatment of biliary disease.展开更多
Human immunodeficiency virus(HIV)infection is strongly associated with a height-ened incidence of lymphomas.To mirror the natural course of human HIV infection,animal models have been developed.These models serve as v...Human immunodeficiency virus(HIV)infection is strongly associated with a height-ened incidence of lymphomas.To mirror the natural course of human HIV infection,animal models have been developed.These models serve as valuable tools to inves-tigate disease pathobiology,assess antiretroviral and immunomodulatory drugs,ex-plore viral reservoirs,and develop eradication strategies.However,there are currently no validated in vivo models of HIV-associated lymphoma(HAL),hampering progress in this crucial domain,and scant attention has been given to developing animal models dedicated to studying HAL,despite their pivotal role in advancing knowledge.This re-view provides a comprehensive overview of the existing animal models of HAL,which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.展开更多
Cochlear implantation(CI)is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses.Since its inception in 1961...Cochlear implantation(CI)is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses.Since its inception in 1961,cochlear implantation has expanded its range of applications to encompass younger newborns,older people,and individuals with unilateral hearing loss.In addition,it has improved its surgical methods to minimize the occurrence of complications.Furthermore,notable advancements have been made in the design of electrodes,techniques for speech processing,and software for programming.Nevertheless,inflammation,fibrosis,and even ossification are observed in the cochlea of nearly all cochlear implant(CI)patients.These tissue responses might have a negative impact on the performance of the implants,residual hearing,and the results of post-operative CI rehabilitation.Animal models are significant translational tools that offer essential preclinical data for possible therapeutics.Thus,this study concentrates on the existing animal models used for cochlear implantation,highlights the advancements made in research,and offers insights into potential future research areas.展开更多
Aortic valve calcification disease (CAVD) is the most prevalent degenerative valve disease in humans, leading to significant morbidity and mortality. Despite its common occurrence, our understanding of the underlying ...Aortic valve calcification disease (CAVD) is the most prevalent degenerative valve disease in humans, leading to significant morbidity and mortality. Despite its common occurrence, our understanding of the underlying mechanisms remains incomplete, and available treatment options are limited and risky. A more comprehensive understanding of the biology of CAVD is essential to identify new therapeutic strategies. Animal models have played a crucial role in advancing our knowledge of CAVD and exploring potential treatments. However, these models have inherent limitations as they cannot fully replicate the complex physiological mechanisms of human CAVD. In this review, we examine various CAVD models ranging from pigs to mice, highlighting the unique characteristics of each model to enhance our understanding of CAVD. While these models offer valuable insights, they also have limitations and shortcomings. We propose that the guide wire model shows promise for future CAVD research, and streamlining the methodology could enhance our understanding and expand the research scope in this field.展开更多
Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack...Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack of suitable,robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposi-tion.Here,we aim to establish a mouse model to mimic the development and features of CAVS.Methods:The model was established via aortic valve wire injury(AVWI)combined with vitamin D subcutaneous injected in wild type C57/BL6 mice.Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradi-ent.Histopathological specimens were collected and examined in respect of valve thickening,calcium deposition,collagen accumulation,osteogenic differentiation and inflammation.Results:Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time depend-ent manner and tended to be stable at 28 days.Compared with the sham group,sim-ple AVWI or the vitamin D group,the hybrid model group showed typical pathological features of CAVS,including hemodynamic alterations,increased aortic valve thicken-ing,calcium deposition,collagen accumulation at 28 days.In addition,osteogenic dif-ferentiation,fibrosis and inflammation,which play critical roles in the development of CAVS,were observed in the hybrid model.Conclusions:We established a novel mouse model of CAVS that could be induced efficiently,robustly and economically,and without genetic intervention.It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effec-tive pharmacological targets.展开更多
Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encodi...Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.展开更多
BACKGROUND Various animal models have been used to explore the pathogenesis of choledochal cysts(CCs),but with little convincing results.Current surgical techniques can achieve satisfactory outcomes for treatment of C...BACKGROUND Various animal models have been used to explore the pathogenesis of choledochal cysts(CCs),but with little convincing results.Current surgical techniques can achieve satisfactory outcomes for treatment of CCs.Consequently,recent studies have focused more on clinical issues rather than basic research.Therefore,we need appropriate animal models to further basic research.AIM To establish an appropriate animal model that may contribute to the investigation of the pathogenesis of CCs.METHODS Eighty-four specific pathogen-free female Sprague-Dawley rats were randomly allocated to a surgical group,sham surgical group,or control group.A rat model of CC was established by partial ligation of the bile duct.The reliability of the model was confirmed by measurements of serum biochemical indices,morpho-logy of common bile ducts of the rats as well as molecular biology experiments in rat and human tissues.RESULTS Dilation classified as mild(diameter,≥1 mm to<3 mm),moderate(≥3 mm to<10 mm),and severe(≥10 mm)was observed in 17,17,and 2 rats in the surgical group,respectively,while no dilation was observed in the control and sham surgical groups.Serum levels of alanine aminotransferase,aspartate aminotrans-ferase,total bilirubin,direct bilirubin,and total bile acids were significantly elevated in the surgical group as compared to the control group 7 d after surgery,while direct bilirubin,total bilirubin,and gamma-glutamyltransferase were further increased 14 d after surgery.Most of the biochemical indices gradually decreased to normal ranges 28 d after surgery.The protein expression trend of signal transducer and activator of transcription 3 in rat model was consistent with the human CC tissues.CONCLUSION The model of partial ligation of the bile duct of juvenile rats could morphologically simulate the cystic or fusiform CC,which may contribute to investigating the pathogenesis of CC.展开更多
文摘The increasing incidence and mortality associated with advanced stages of melanoma are cause for concern. Few treatment options are available for advanced melanoma and the 5-year survival rate is less than 15%. Targeted therapies may revolutionize melanoma treatment by providing less toxic and more effective strategies. However, maximizing effectiveness requires further understanding of the molecular alterations that drive tumor formation, progression, and maintenance, as well as elucidating the mechanisms of resistance. Several different genetic alterations identified in human melanoma have been recapitulated in mice. This review outlines recent progress made in the development of mouse models of melanoma and summarizes what these findings reveal about the human disease. We begin with a discussion of traditional models and conclude with the recently developed RCAS/TVA somatic cell gene delivery mouse model of melanoma.
基金supported by the Cutting Edge Development Fund of Advanced Medical Research Institute(GYY2023QY01)the China Postdoctoral Science Foundation(certificate number:2023M732093)。
文摘Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poorly understood,as it involves complex mechanisms that result in the same outcome.Consequently,researchers are interested in studying KOA and require appropriate animal models for basic research.Chinese herbal compounds,which consist of multiple herbs with diverse pharmacological properties,possess characteristics such as multicomponent,multipathway,and multitarget effects.The potential benefits in the treatment of KOA continue to attract attention.Purpose:This study aims to provide a comprehensive overview of the advantages,limitations,and specific considerations in selecting different species and methods for KOA animal models.This will help researchers make informed decisions when choosing an animal model.Methods:Online academic databases(e.g.,PubMed,Google Scholar,Web of Science,and CNKI)were searched using the search terms“knee osteoarthritis,”“animal models,”“traditional Chinese medicine,”and their combinations,primarily including KOA studies published from 2010 to 2023.Results:Based on literature retrieval,this review provides a comprehensive overview of the methods of establishing KOA animal models;introduces the current status of advantages and disadvantages of various animal models,including mice,rats,rabbits,dogs,and sheep/goats;and presents the current status of methods used to establish KOA animal models.Conclusion:This study provides a review of the animal models used in recent KOA research,discusses the common modeling methods,and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.
基金National Key Research and Development Program of China(2022YFC2303700,2021YFC2301300)Yunnan Key Research and Development Program(202303AC100026)+2 种基金National Natural Science Foundation of China(82302002,82341069)Yunnan Fundamental Research Project(202201AS070047)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0490000)。
文摘The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
基金supported by the National Key Research and Development Program of China (2021YFA0805300,2021YFA0805200)National Natural Science Foundation of China (32170981,82371874,82394422,82171244,82071421,82271902)+1 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001)。
文摘Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China,No.81772421(to YH).
文摘Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.
基金supported by the National Natural Science Foundation of China (31970574)。
文摘Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.
基金Supported by the following Brazilian funding agencies:Financiamento e IncentivoàPesquisa from Hospital de Clínicas de Porto Alegre(FIPE/HCPA),No.2021-0105(toÁlvares-da-Silva MR)Coordination for the Improvement of Higher Education Personnel,CAPES/PNPDand this study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(toÁlvares-da-Silva MR).
文摘BACKGROUND Prevalence of hepatocellular carcinoma(HCC)is increasing,especially in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD).AIM To investigate rifaximin(RIF)effects on epigenetic/autophagy markers in animals.METHODS Adult Sprague-Dawley rats were randomly assigned(n=8,each)and treated from 5-16 wk:Control[standard diet,water plus gavage with vehicle(Veh)],HCC[high-fat choline deficient diet(HFCD),diethylnitrosamine(DEN)in drinking water and Veh gavage],and RIF[HFCD,DEN and RIF(50 mg/kg/d)gavage].Gene expression of epigenetic/autophagy markers and circulating miRNAs were obtained.RESULTS All HCC and RIF animals developed metabolic-dysfunction associated steatohepatitis fibrosis,and cirrhosis,but three RIF-group did not develop HCC.Comparing animals who developed HCC with those who did not,miR-122,miR-34a,tubulin alpha-1c(Tuba-1c),metalloproteinases-2(Mmp2),and metalloproteinases-9(Mmp9)were significantly higher in the HCC-group.The opposite occurred with Becn1,coactivator associated arginine methyltransferase-1(Carm1),enhancer of zeste homolog-2(Ezh2),autophagy-related factor LC3A/B(Map1 Lc3b),and p62/sequestosome-1(p62/SQSTM1)-protein.Comparing with controls,Map1 Lc3b,Becn1 and Ezh2 were lower in HCC and RIF-groups(P<0.05).Carm1 was lower in HCC compared to RIF(P<0.05).Hepatic expression of Mmp9 was higher in HCC in relation to the control;the opposite was observed for p62/Sqstm1(P<0.05).Expression of p62/SQSTM1 protein was lower in the RIF-group compared to the control(P=0.024).There was no difference among groups for Tuba-1c,Aldolase-B,alpha-fetoprotein,and Mmp2(P>0.05).miR-122 was higher in HCC,and miR-34a in RIF compared to controls(P<0.05).miR-26b was lower in HCC compared to RIF,and the inverse was observed for miR-224(P<0.05).There was no difference among groups regarding miR-33a,miR-143,miR-155,miR-375 and miR-21(P>0.05).CONCLUSION RIF might have a possible beneficial effect on preventing/delaying liver carcinogenesis through epigenetic modulation in a rat model of MASLD-HCC.
基金This study was supported by grants from the National Natural Science Foundation of China(82272396)the Fundamental Research Funds for the Central Universities(226-2022-00061).
文摘Hepatitis E virus(HEV)is one of the leading causes of acute viral hepatitis worldwide.Although most of HEV infections are asymptomatic,some patients will develop the symptoms,especially pregnant women,the elderly,and patients with preexisting liver diseases,who often experience anorexia,nausea,vom-iting,malaise,abdominal pain,and jaundice.HEV infection may become chronic in immunosuppressed individuals.In addition,HEV infection can also cause several extrahepatic manifestations.HEV exists in a wide range of hosts in nature and can be transmitted across species.Hence,animals susceptible to HEV can be used as models.The establishment of animal models is of great significance for studying HEV transmission,clinical symptoms,extrahepatic manifestations,and therapeutic strategies,which will help us understand the pathogenesis,prevention,and treatment of hepatitis E.This review summarized the animal models of HEV,including pigs,monkeys,rabbits,mice,rats,and other animals.For each animal species,we provided a concise summary of the HEV genotypes that they can be infected with,the cross-species transmission pathways,as well as their role in studying extrahepatic manifestations,prevention,and treatment of HEV infection.The advantages and disadvantages of these animal models were also emphasized.This review offers new perspectives to enhance the current understanding of the research landscape surrounding HEV animal models.
基金the Science and Technology Innovation Cooperation Special Programme of Sichuan Province,Grant/Award Number:2022YFS0609-C1Industry-University-Research Cooperation Foundation,Grant/Award Number:2021CXYZ01+2 种基金Luzhou Science and Technology Plan Project,Grant/Award Number:2021-SYF-25China Postdoctoral Science Foundation,Grant/Award Number:2023M732927Scientific Research Project of Southwest Medical University,Grant/Award Number:2021ZKMS051 and 2022QN018。
文摘Tendon calcification is a common clinical condition that frequently occurs as a complication after tendon injury and surgery,or as an expression of fibrodysplasia ossificans progressiva.This condition can be referred to by various names in clinical practice and literature,including tendon ossification,tendon mineralization,heterotopic ossification,and calcific tendonitis.The exact pathogenesis of tendon calcification remains uncertain,but current mainstream research suggests that calcification is mostly cell mediated.To further elucidate the pathogenesis of tendon calcification and to better simulate the overall process,selecting appropriate experimental animal models is important.Numerous animal models have been utilized in various clinical studies,each with its own set of advantages and limitations.In this review,we have discussed the advancements made in research on animal models of tendon calcification,with a focus on the selection of experimental animals,the sites of injury in these models,and the methods employed for modeling.
基金supported by the National Key Research and Development Program of China(2021YFC2500100)Major Science&Technology Program of Sichuan Province(2022ZDZX0021)+2 种基金National Clinical Research Center for Geriatrics,West China Hospital,Sichuan University(Z2024JC007)Sichuan Science and Technology Program(2024YFHZ0010,2024NSFSC1643)West China Hospital 1.3.5 Project for Disciplines of Excellence(ZYYC23016)。
文摘Animal models constructed using pathogenic factors have significantly advanced drug development for Alzheimer's disease(AD).These predominantly transgenic models,mainly in mice,replicate pathological phenotypes through gene mutations associated with familial AD cases,thus serving as vital tools for assessing drug efficacy and for performing mechanistic studies.However,the speciesspecific differences and complex,heterogeneous nature of AD etiology pose considerable challenges for the translatability of these animal models,limiting their utility in drug development.This review offers a comprehensive analysis of widely employed rodent(mice and rats)and non-rodent models(Danio rerio(zebrafish),Drosophila melanogaster,and Caenorhabditis elegans),detailing their phenotypic features and specific research applications.This review also examines the limitations inherent in these models and introduces various strategies for expanding AD modeling across diverse species,emphasizing recent advancement in non-human primates(NHPs)as valuable models.Furthermore,potential insights from the integration of innovative technologies in AD research are discussed,while providing valuable perspectives on the future development of AD animal models.
基金supported by the National Key Research and Development Program of China(2021YFC2500100)Major Science&Technology Program of Sichuan Province(2022ZDZX0021)+2 种基金National Clinical Research Center for Geriatrics,West China Hospital,Sichuan University(Z2024JC007)Sichuan Science and Technology Program(2024YFHZ0010)West China Hospital 1.3.5 Project for Disciplines of Excellence(ZYYC23016)。
文摘Stroke is a major cause of death and disability worldwide,with the majority of cases resulting from ischemic events due to arterial occlusion.Current therapeutic approaches focus on rapid reperfusion through intravenous thrombolysis and intravascular thrombectomy.Although these interventions can mitigate long-term disability,reperfusion itself may induce neuronal injury.The exact mechanisms underlying neuronal damage following cerebral ischemia have yet to be reported.Recent research suggests that ferroptosis may play a significant role in post-ischemic neuronal death,which can be targeted to prevent neuronal loss.This review explores the three essential hallmarks of ferroptosis:the presence of redox-active iron,the peroxidation of polyunsaturated fatty acid-containing phospholipids,and the loss of lipid peroxide repair capacity.The involvement of ferroptosis in neuronal injury following ischemic stroke is also explored,along with an overview of ferroptosis-associated changes in different ischemic stroke animal models.Furthermore,recent therapeutic interventions targeting the ferroptosis pathway,as well as the opportunities,difficulties,and future directions of ferroptosis-targeted therapies in ischemic stroke,are discussed.
文摘Vector-borne diseases caused by arthropod-borne viruses(arboviruses) are a considerable challenge to public health globally. Mosquito-borne arboviruses, such as Chikungunya, Dengue, and Zika viruses, cause a range of human illnesses and may be fatal. Currently, efforts to control these diseases still face challenges due to growing vector resistance towards insecticides, urbanization, and limited effective antiviral treatments and vaccines. Animal models are crucial in antiviral research on mosquito-borne arboviruses, playing a role in understanding disease mechanisms,vaccine development, and toxicity testing, but the application of animal models still faces the challenges of ethical considerations and animal-to-human translational success. Genetically engineered mouse models, hamster models and non-human primate(NHP) are currently used in arbovirus research, but new models such as tree shrews and novel humanized mice are emerging. In the context of Malaysian research, the use of long-tailed macaques as potential NHP models for arbovirus research is possible;however, it faces the ethical dilemma of using an endangered species for scientific purposes. Overall, animal models play a crucial role in advancing infectious disease research, but a balance between medical research and species conservation must be upheld.
基金Supported by Korea Health Technology R&D Project through the Korea Health Industry Development Institute,Funded by the Ministry of Health&Welfare,Republic of Korea,No.HR20C0025 and No.HI22C1212the National Research Foundation of Korea Grant Funded by the Korea Government,No.RS-2023-00238188。
文摘BACKGROUND Chronic biliary disease,including cholangitis and cholecystitis,is attributed to ascending infection by intestinal bacteria.Development of a mouse model for bile duct inflammation is imperative for the advancement of novel therapeutic approaches.Current models fail to replicate the harmful bacterial influx to the biliary tract observed in humans and spread of inflammation to the liver.Therefore,we aimed to establish an animal model of biliary disease that faithfully replicates the mechanisms of human diseases.AIM To establish a cholecystoduodenal anastomosis model capable of mimicking the mechanisms of ascending infection and inflammation observed in human biliary diseases.METHODS We established a mouse biliary disease model by directly connecting the gallbladder and duodenum,enabling ascending infection into the biliary tract without traversing the sphincter of Oddi.RESULTS In the cholecystoduodenal anastomosis mouse model,we observed impaired epithelial structure,wall thickening,and macrophage recruitment in the gallbladder.Despite the absence of postoperative antibiotics,we detected no changes in serum proinflammatory cytokine levels,indicating no systemic inflammation.Moreover,patency between the gallbladder and duodenum was confirmed via common bile duct ligation.Injection of patient-derived pathogenic bacteria into bile duct-ligated mice led to ascending infection,which significantly increased proinflammatory cytokine mRNA expression in the liver,duodenum,and ileum.These results indicate that our mouse model exhibited a direct connection between the gallbladder and duodenum,leading to ascending infection and closely mimicking the clinical features of biliary diseases observed in humans.CONCLUSION The cholecystoduodenal anastomosis mouse model is an effective chronic biliary disease model with significant relevance in the development of microbiome-based therapies for the prevention and treatment of biliary disease.
基金Chongqing Professional Talents Plan,Grant/Award Number:cstc2022ycjh-bgzxm0048Fundamental Research Funds for the Central Universities,Grant/Award Number:2022CDJYGRH-001Natural Science Foundation of Chongqing,China,Grant/Award Number:CSTB2022NSCQ-MSX1150。
文摘Human immunodeficiency virus(HIV)infection is strongly associated with a height-ened incidence of lymphomas.To mirror the natural course of human HIV infection,animal models have been developed.These models serve as valuable tools to inves-tigate disease pathobiology,assess antiretroviral and immunomodulatory drugs,ex-plore viral reservoirs,and develop eradication strategies.However,there are currently no validated in vivo models of HIV-associated lymphoma(HAL),hampering progress in this crucial domain,and scant attention has been given to developing animal models dedicated to studying HAL,despite their pivotal role in advancing knowledge.This re-view provides a comprehensive overview of the existing animal models of HAL,which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.
基金supported by the following:(1)National Natural Science Foundation of China(NSFC#82000976)to Jianan Li(2)National Key Research and Development Program of China(2022YFC2402700)to Wei Chen.
文摘Cochlear implantation(CI)is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses.Since its inception in 1961,cochlear implantation has expanded its range of applications to encompass younger newborns,older people,and individuals with unilateral hearing loss.In addition,it has improved its surgical methods to minimize the occurrence of complications.Furthermore,notable advancements have been made in the design of electrodes,techniques for speech processing,and software for programming.Nevertheless,inflammation,fibrosis,and even ossification are observed in the cochlea of nearly all cochlear implant(CI)patients.These tissue responses might have a negative impact on the performance of the implants,residual hearing,and the results of post-operative CI rehabilitation.Animal models are significant translational tools that offer essential preclinical data for possible therapeutics.Thus,this study concentrates on the existing animal models used for cochlear implantation,highlights the advancements made in research,and offers insights into potential future research areas.
文摘Aortic valve calcification disease (CAVD) is the most prevalent degenerative valve disease in humans, leading to significant morbidity and mortality. Despite its common occurrence, our understanding of the underlying mechanisms remains incomplete, and available treatment options are limited and risky. A more comprehensive understanding of the biology of CAVD is essential to identify new therapeutic strategies. Animal models have played a crucial role in advancing our knowledge of CAVD and exploring potential treatments. However, these models have inherent limitations as they cannot fully replicate the complex physiological mechanisms of human CAVD. In this review, we examine various CAVD models ranging from pigs to mice, highlighting the unique characteristics of each model to enhance our understanding of CAVD. While these models offer valuable insights, they also have limitations and shortcomings. We propose that the guide wire model shows promise for future CAVD research, and streamlining the methodology could enhance our understanding and expand the research scope in this field.
基金National Natural Science Foundation of China,Grant/Award Number:81770252,82030014,82271606 and U22A20267Binjiang Institute of Zhejiang University,Grant/Award Number:ZY202205SMKY001Key Program of Major Science and Technology Projects in Zhejiang Province,Grant/Award Number:2021C03097 and 2022C03063。
文摘Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack of suitable,robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposi-tion.Here,we aim to establish a mouse model to mimic the development and features of CAVS.Methods:The model was established via aortic valve wire injury(AVWI)combined with vitamin D subcutaneous injected in wild type C57/BL6 mice.Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradi-ent.Histopathological specimens were collected and examined in respect of valve thickening,calcium deposition,collagen accumulation,osteogenic differentiation and inflammation.Results:Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time depend-ent manner and tended to be stable at 28 days.Compared with the sham group,sim-ple AVWI or the vitamin D group,the hybrid model group showed typical pathological features of CAVS,including hemodynamic alterations,increased aortic valve thicken-ing,calcium deposition,collagen accumulation at 28 days.In addition,osteogenic dif-ferentiation,fibrosis and inflammation,which play critical roles in the development of CAVS,were observed in the hybrid model.Conclusions:We established a novel mouse model of CAVS that could be induced efficiently,robustly and economically,and without genetic intervention.It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effec-tive pharmacological targets.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2301403 and 2022YFF0711000。
文摘Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.
基金the Key R&D Program of Zhejiang,No.2023C03029Health Science and Technology Plan of Zhejiang Province,No.2022RC201Zhejiang Provincial Natural Science Foundation Project,No.LY20H030007.
文摘BACKGROUND Various animal models have been used to explore the pathogenesis of choledochal cysts(CCs),but with little convincing results.Current surgical techniques can achieve satisfactory outcomes for treatment of CCs.Consequently,recent studies have focused more on clinical issues rather than basic research.Therefore,we need appropriate animal models to further basic research.AIM To establish an appropriate animal model that may contribute to the investigation of the pathogenesis of CCs.METHODS Eighty-four specific pathogen-free female Sprague-Dawley rats were randomly allocated to a surgical group,sham surgical group,or control group.A rat model of CC was established by partial ligation of the bile duct.The reliability of the model was confirmed by measurements of serum biochemical indices,morpho-logy of common bile ducts of the rats as well as molecular biology experiments in rat and human tissues.RESULTS Dilation classified as mild(diameter,≥1 mm to<3 mm),moderate(≥3 mm to<10 mm),and severe(≥10 mm)was observed in 17,17,and 2 rats in the surgical group,respectively,while no dilation was observed in the control and sham surgical groups.Serum levels of alanine aminotransferase,aspartate aminotrans-ferase,total bilirubin,direct bilirubin,and total bile acids were significantly elevated in the surgical group as compared to the control group 7 d after surgery,while direct bilirubin,total bilirubin,and gamma-glutamyltransferase were further increased 14 d after surgery.Most of the biochemical indices gradually decreased to normal ranges 28 d after surgery.The protein expression trend of signal transducer and activator of transcription 3 in rat model was consistent with the human CC tissues.CONCLUSION The model of partial ligation of the bile duct of juvenile rats could morphologically simulate the cystic or fusiform CC,which may contribute to investigating the pathogenesis of CC.