期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A fast and in-depth self-reconstruction of anion ligands optimized CoFe-based pre-catalysts for water oxidation 被引量:1
1
作者 Qiuyan Jin Hao Cui Chengxin Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期812-819,共8页
The design of efficient and robust non-precious metal electrocatalysts towards oxygen evolution reaction(OER)is of great value for developing green energy technologies.The in-situ formed high-valence(oxy)hydroxides sp... The design of efficient and robust non-precious metal electrocatalysts towards oxygen evolution reaction(OER)is of great value for developing green energy technologies.The in-situ formed high-valence(oxy)hydroxides species during the reconstruction process of pre-catalysts are recognized as the real contributing sites for OER.However,pre-catalysts generally undergo a slow and inadequate self-reconstruction.Herein,we reported a PO^(3-)_(4)optimized CoFe-based OER catalysts with amorphous structure,which enables a fast and deep reconstruction during the OER process.The amorphous structure induced by ligands PO^(3-)_(4)is prone to evolution and further form active species for OER.The electron interaction between metal sites can be modulated by electron-rich PO^(3-)_(4),which promotes generation of high active CoOOH.Simultaneously,the etching of PO^(3-)_(4)from the pre-catalysts during the catalytic process is in favor of accelerating the self-reconstruction.As a result,as-prepared precatalyst can generate high active CoOOH at a low potential of 1.4 V and achieve an in-depth reconstructed nanosheet structure with abundant OER active sites.Our work provides a promising design of pre-catalysts for realizing efficient catalysis of water oxidation. 展开更多
关键词 Oxygen evolution reaction Pre-catalysts Reconstruction Anion ligands Bimetallic catalysts
下载PDF
Influence of anions on the adsorption of uranyl on hydroxylated α-SiO_2(001):A first-principles study 被引量:1
2
作者 Hui Wang Zhifang Chai Dongqi Wang 《Green Energy & Environment》 SCIE 2017年第1期30-41,共12页
The adsorption of uranyl on hydroxylated α-SiO_2(001) in the presence of a series of anionic ligands, i.e. OH^-, CO_3^(2-), NO_3^-, H_2PO_4^-, HPO_4^(2-),CH_3COO^-(Ac^-), C_6H_5COO^-(PhCO_2^-), C_6H_5O^-(PhO^-), was ... The adsorption of uranyl on hydroxylated α-SiO_2(001) in the presence of a series of anionic ligands, i.e. OH^-, CO_3^(2-), NO_3^-, H_2PO_4^-, HPO_4^(2-),CH_3COO^-(Ac^-), C_6H_5COO^-(PhCO_2^-), C_6H_5O^-(PhO^-), was studied by the periodic density functional theory(DFT) implemented in the Vienna ab initio simulation package(VASP). For the ligands other than OH^-and PhO^-, only the bidentate coordination modes to the uranyl were considered. The excess charge effect of a charged system was first evaluated by constructing models with net charge as is or neutralized by creating defect at the bottom of silica, and the results show that a neutralized model, even with defects, is more realistic than the charged ones.All uranyl species prefer to bind with the deprotonated site(—O^-) rather than the protonated one(—O_H), which suggests that the increase of pH,which leads to the deprotonation of the surface, may enhance the uranyl adsorption. On the other hand, the anionic ligands, which are formed at higher pH, have negative effects. The weaker acidic ligands, such as H_2CO_3, H_3PO_4 and H_2O, whose speciation in solutions is sensitive to the fluctuation of pH, have more complex effect on the uranyl adsorption than strong acids or bases. Humic substances may coordinate with uranyl through carboxyl and phenolic groups, with the carboxyl group bound stronger. The ternary complexes with one bidentate(or monodentate)anion and one(or two) H20 as ligands, which leads to the uranyl penta-coordinated in its equatorial plane, are more favorable than other configurations when bound to the same anionic ligand. Both the charged nature and the coordination behavior of an anionic ligand are relevant to its ability to influence the adsorption of uranyl on the mineral surface. In addition, the uranyl species adsorbed at the surface functionalized by anionic ligands were also addressed, and the functionalized surfaces have weaker interaction with hydrated uranyl dication. 展开更多
关键词 Density functional theory ADSORPTION α-SiO2(001) URANYL anionic ligands
下载PDF
Synthesis and Crystal Structure of a Three-dimensional Mn(Ⅱ) Coordination Polymer with 3-(Pyrazin-2-yloxy)-pyridine and Azide Anion as Mixed Bridge Ligand 被引量:1
3
作者 李红 赵红艳 +1 位作者 张士国 石敬民 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第12期1511-1513,共3页
A three-dimensional coordination polymer [Mn2(μ1.3-N3)4(μ-PP)2]n (PP = 3-(pyrazin-2-yloxy)-pyridine) has been synthesized with 3-(pyrazin-2-yloxy)-pyridine and azide anion as mixed bridge ligand, and its c... A three-dimensional coordination polymer [Mn2(μ1.3-N3)4(μ-PP)2]n (PP = 3-(pyrazin-2-yloxy)-pyridine) has been synthesized with 3-(pyrazin-2-yloxy)-pyridine and azide anion as mixed bridge ligand, and its crystal structure was determined by X-ray crystallography. The crystal data: triclinic system, space group P1, with a = 6.794(4), b = 9.885(6), c = 9.947(6) A, α = 64.170(6), β= 84.190(8), γ= 85.319(8)°, V = 597.7(6)A^3, Z = 1, C18H14Mn2N18O2, Mr = 624.35, Dc = 1.735 g/cm^3, F(000) = 314 and μ = 1.117 mm^-1. In the crystal, the azide anion acts as a bridge ligand and makes adjacent Mn(Ⅱ) ions connect into a two-dimensional sheet on the ab plane, then 3-(pyrazin-2-yloxy)-pyridine serves as a bidentate bridge ligand to connect neighboring sheets along 展开更多
关键词 II Synthesis and Crystal Structure of a Three-dimensional Mn Coordination Polymer with 3 Pyrazin-2-yloxy pyridine and Azide Anion as Mixed Bridge Ligand
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部