Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m...Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n).展开更多
Let a:=(a_(1),...,a_(n))2[1,∞)^(n),p∈(0,1),andα:=1/p-1.For any x∈R^(n)and t∈[0,∞),letΦ_(p)(x,t):={t/1+(t[x]_(a)^(ν))^(1-p)if να■N,t/1+(t[x]_(a)^(ν))^(1-p)[log(e+|x|a)]^(p)if να∈N,let where [·]a:=1+...Let a:=(a_(1),...,a_(n))2[1,∞)^(n),p∈(0,1),andα:=1/p-1.For any x∈R^(n)and t∈[0,∞),letΦ_(p)(x,t):={t/1+(t[x]_(a)^(ν))^(1-p)if να■N,t/1+(t[x]_(a)^(ν))^(1-p)[log(e+|x|a)]^(p)if να∈N,let where [·]a:=1+|·|a,|·|a denotes the anisotropic quasi-homogeneous norm with respect to a,and ν:=a_(1)+…+a_(n).Let H_(a)^(p)(R^(n)),L_(a)^(a)(R^(n)),and H_(a)^(Φ_(p))(R^(n))be,respectively,the anisotropic Hardy space,the anisotropic Campanato space,and the anisotropic Musielak-Orlicz Hardy space associated with Φ_(p) on R^(n).In this article,via first establishing the wavelet characterization of anisotropic Campanato spaces,we prove that for any f∈H_(a)^(p)(R^(n))and g∈L_(a)^(a)(R^(n)),the product of f and g can be decomposed into S(f,g)+T(f,g) in the sense of tempered distributions,where S is a bilinear operator bounded from H_(a)^(p)(R^(n))*L_(a)^(a)(R^(Φ_(p))) to L^(1)(R^(n)) and T is a bilinear operator bounded from H_(a)^(p)(R^(n))*L_(a)^(a)(R^(n)) to H_(a)^(Φ_(p))(R^(n)) .Moreover,this bilinear decomposition is sharp in the dual sense that any y■H_(a)^(Φ_(p))(R^(n)) that fits into the above bilinear decomposition should satisfy(L^(1)(R^(n))+y)*=(L^(1)(R^(n)+H_(a)^(Φ_(p))(R^(n))*.As applications,for any non-constant b∈L_(a)^(a)(R^(n)) and any sublinear operator T satisfying some mild bounded assumptions,we find the largest subspace of H_(a)^(p)(R^(n)),denoted by H_(a,b)^(p)(R^(n)),such that the commutator [b,T] is bounded from H_(a,b)^(p)(R^(n))to L^(1)(R^(n)).In addition,when T is an anisotropic CalderónZygmund operator,the boundedness of [b,T] from H_(a,b)^(p)(R^(n))to L^(1)(R^(n))(or to H_(a)^(1)(R^(n)) is also presented.The key of their proofs is the wavelet characterization of function spaces under consideration.展开更多
Let a:=(a1,…,an)∈[1,∞)n,p:=(p1,…,pn)∈(0,1]n,Hpa(R^(n))be the anisotropic mixed-norm Hardy space associated with adefined via the radial maximal function,and let f belong to the Hardy space Hpa(R^(n)).In this arti...Let a:=(a1,…,an)∈[1,∞)n,p:=(p1,…,pn)∈(0,1]n,Hpa(R^(n))be the anisotropic mixed-norm Hardy space associated with adefined via the radial maximal function,and let f belong to the Hardy space Hpa(R^(n)).In this article,we show that the Fourier transform fcoincides with a continuous function g onℝn in the sense of tempered distributions and,moreover,this continuous function g,multiplied by a step function associated with a,can be pointwisely controlled by a constant multiple of the Hardy space norm of f.These proofs are achieved via the known atomic characterization of Hpa(R^(n))and the establishment of two uniform estimates on anisotropic mixed-norm atoms.As applications,we also conclude a higher order convergence of the continuous function gat the origin.Finally,a variant of the Hardy-Littlewood inequality in the anisotropic mixed-norm Hardy space setting is also obtained.All these results are a natural generalization of the well-known corresponding conclusions of the classical Hardy spaces Hp(R^(n))with p∈0,1],and are even new for isotropic mixed-norm Hardy spaces on∈n.展开更多
In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also...In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.展开更多
In this paper, a class of anisotropic Herz-type Hardy spaces associated with a non-isotropic dilation on ℝ<SUP> n </SUP>are introduced, and the central atomic and molecular decomposition characte...In this paper, a class of anisotropic Herz-type Hardy spaces associated with a non-isotropic dilation on ℝ<SUP> n </SUP>are introduced, and the central atomic and molecular decomposition characterizations of those spaces are established. As some applications of the decomposition theory, the authors study the interpolation problem and the boundedness of the central δ-Calderón-Zygmund operators on the anisotropic Herz-type Hardy spaces.展开更多
Let A be an expansive dilation on Rn and φ : Hn×[0, ∞)→[0, ∞) an anisotropic Musielak-Orlicz function. Let HAφ(R^n) be the anisotropic Hardy space of Musielak-Orlicz type defined via the grand maximal f...Let A be an expansive dilation on Rn and φ : Hn×[0, ∞)→[0, ∞) an anisotropic Musielak-Orlicz function. Let HAφ(R^n) be the anisotropic Hardy space of Musielak-Orlicz type defined via the grand maximal function. In this article, the authors establish its molecular characterization via the atomic characterization of HAφ(R^n). The molecules introduced in this article have the vanishing moments up to order s and the range of s in the isotropic case (namely, A := 2In×n) coincides with the range of well-known classical molecules and, moreover, even for the isotropic Hardy space HP(R^n) with p∈[(0, 1] (in this case, A := 2In×n,φ(x, t) := t^p for all x ∈ R^n and t∈[0,∞)), this molecular characterization is also new. As an application, the authors obtain the boundedness of anisotropic Caldeon-Zygmund operators from HA^φ(Hn) to L^φ(R^n) or from HA^φ(Hn) to itself.展开更多
The main purpose of this paper is to establish, using the Littlewood–Paley–Stein theory(in particular, the Littlewood–Paley–Stein square functions), a Calderón–Torchinsky type theorem for the following Fouri...The main purpose of this paper is to establish, using the Littlewood–Paley–Stein theory(in particular, the Littlewood–Paley–Stein square functions), a Calderón–Torchinsky type theorem for the following Fourier multipliers on anisotropic Hardy spaces Hp(Rn;A) associated with expensive dilation A:■Our main Theorem is the following: Assume that m(ξ) is a function on Rn satisfying ■with s > ζ--1(1/p-1/2). Then Tm is bounded from Hp(Rn;A) to Hp(Rn;A) for all 0 < p ≤ 1 and ■where A* denotes the transpose of A. Here we have used the notations mj(ξ) = m(A*jξ)φ(ξ) and φ(ξ) is a suitable cut-off function on Rn, and Ws(A*) is an anisotropic Sobolev space associated with expansive dilation A* on Rn.展开更多
Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R^n×R^m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz ...Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R^n×R^m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space H~φ_A(R^n× R^m) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the g_λ~*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of H~φ_A(R^n× R^m) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from H~φ_A(R^n× R^m) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from H~φ_A(R^n× R^m) to L~φ(R^n× R^m)and from H~φ_A(R^n×R^m) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on R^n× R^m and are new even for classical product Orlicz-Hardy spaces.展开更多
Let A be an expansive dilation. We define weakly strongly singular integral kernels and study the action of the operators induced by these kernels on anisotropic Hardy spaces associated with A.
In this paper we give the conditions on the pair (~1, W2) which ensures the boundedness of the anisotropic maximal operator and anisotropic singular integral operators from one generalized Morrey space Mp,w1 to anot...In this paper we give the conditions on the pair (~1, W2) which ensures the boundedness of the anisotropic maximal operator and anisotropic singular integral operators from one generalized Morrey space Mp,w1 to another Mp,w2, 1 〈 p 〈 ∞, and from the space M1,w1 to the weak space M1,w2.展开更多
基金Supported by NSP of China (Grant No. 10571015)RFDP of China (Grant No. 20050027025).
文摘Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n).
基金supported by National Natural Science Foundation of China(Grant Nos.12001527,11971058 and 12071197)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200647)the Postdoctoral Science Foundation of China(Grant No.2021M693422)。
文摘Let a:=(a_(1),...,a_(n))2[1,∞)^(n),p∈(0,1),andα:=1/p-1.For any x∈R^(n)and t∈[0,∞),letΦ_(p)(x,t):={t/1+(t[x]_(a)^(ν))^(1-p)if να■N,t/1+(t[x]_(a)^(ν))^(1-p)[log(e+|x|a)]^(p)if να∈N,let where [·]a:=1+|·|a,|·|a denotes the anisotropic quasi-homogeneous norm with respect to a,and ν:=a_(1)+…+a_(n).Let H_(a)^(p)(R^(n)),L_(a)^(a)(R^(n)),and H_(a)^(Φ_(p))(R^(n))be,respectively,the anisotropic Hardy space,the anisotropic Campanato space,and the anisotropic Musielak-Orlicz Hardy space associated with Φ_(p) on R^(n).In this article,via first establishing the wavelet characterization of anisotropic Campanato spaces,we prove that for any f∈H_(a)^(p)(R^(n))and g∈L_(a)^(a)(R^(n)),the product of f and g can be decomposed into S(f,g)+T(f,g) in the sense of tempered distributions,where S is a bilinear operator bounded from H_(a)^(p)(R^(n))*L_(a)^(a)(R^(Φ_(p))) to L^(1)(R^(n)) and T is a bilinear operator bounded from H_(a)^(p)(R^(n))*L_(a)^(a)(R^(n)) to H_(a)^(Φ_(p))(R^(n)) .Moreover,this bilinear decomposition is sharp in the dual sense that any y■H_(a)^(Φ_(p))(R^(n)) that fits into the above bilinear decomposition should satisfy(L^(1)(R^(n))+y)*=(L^(1)(R^(n)+H_(a)^(Φ_(p))(R^(n))*.As applications,for any non-constant b∈L_(a)^(a)(R^(n)) and any sublinear operator T satisfying some mild bounded assumptions,we find the largest subspace of H_(a)^(p)(R^(n)),denoted by H_(a,b)^(p)(R^(n)),such that the commutator [b,T] is bounded from H_(a,b)^(p)(R^(n))to L^(1)(R^(n)).In addition,when T is an anisotropic CalderónZygmund operator,the boundedness of [b,T] from H_(a,b)^(p)(R^(n))to L^(1)(R^(n))(or to H_(a)^(1)(R^(n)) is also presented.The key of their proofs is the wavelet characterization of function spaces under consideration.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.11971058,12071197)the National Key Research and Development Program of China(Grant No.2020YFA0712900)Der-Chen Chang was partially supported by an NSF grant DMS-1408839 and a McDevitt Endowment Fund at Georgetown University.
文摘Let a:=(a1,…,an)∈[1,∞)n,p:=(p1,…,pn)∈(0,1]n,Hpa(R^(n))be the anisotropic mixed-norm Hardy space associated with adefined via the radial maximal function,and let f belong to the Hardy space Hpa(R^(n)).In this article,we show that the Fourier transform fcoincides with a continuous function g onℝn in the sense of tempered distributions and,moreover,this continuous function g,multiplied by a step function associated with a,can be pointwisely controlled by a constant multiple of the Hardy space norm of f.These proofs are achieved via the known atomic characterization of Hpa(R^(n))and the establishment of two uniform estimates on anisotropic mixed-norm atoms.As applications,we also conclude a higher order convergence of the continuous function gat the origin.Finally,a variant of the Hardy-Littlewood inequality in the anisotropic mixed-norm Hardy space setting is also obtained.All these results are a natural generalization of the well-known corresponding conclusions of the classical Hardy spaces Hp(R^(n))with p∈0,1],and are even new for isotropic mixed-norm Hardy spaces on∈n.
基金supported by the National Natural Science Foundation of China(11461065)Scientific Research Projects in Colleges and Universities in Xinjiang Uyghur Autonomous Region(XJEDU2014S001)
基金supported by the National Natural Science Foundation of China (Grant No. 10571015)Specialized Research Foundation for Doctor Programme (Grant No. 20050027025)
文摘In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.
基金NSF of China (Grant Nos.10571014 and 10571015)SRFDP of China (Grant No.20050027025)
文摘In this paper, a class of anisotropic Herz-type Hardy spaces associated with a non-isotropic dilation on ℝ<SUP> n </SUP>are introduced, and the central atomic and molecular decomposition characterizations of those spaces are established. As some applications of the decomposition theory, the authors study the interpolation problem and the boundedness of the central δ-Calderón-Zygmund operators on the anisotropic Herz-type Hardy spaces.
基金partially supported by National Natural Science Foundation of China(Grant Nos.11461065,11161044,11571039 and 11361020)supported by Scientific Research Projects in Colleges and Universities in Xinjiang Uyghur Autonomous Region(Grant No.XJEDU2014S001)+2 种基金supported by National Natural Science Foundation of China(Grant No.11271175)partially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120003110003)the Fundamental Research Funds for Central Universities of China(Grant Nos.2013YB60and 2014KJJCA10)
文摘Let A be an expansive dilation on Rn and φ : Hn×[0, ∞)→[0, ∞) an anisotropic Musielak-Orlicz function. Let HAφ(R^n) be the anisotropic Hardy space of Musielak-Orlicz type defined via the grand maximal function. In this article, the authors establish its molecular characterization via the atomic characterization of HAφ(R^n). The molecules introduced in this article have the vanishing moments up to order s and the range of s in the isotropic case (namely, A := 2In×n) coincides with the range of well-known classical molecules and, moreover, even for the isotropic Hardy space HP(R^n) with p∈[(0, 1] (in this case, A := 2In×n,φ(x, t) := t^p for all x ∈ R^n and t∈[0,∞)), this molecular characterization is also new. As an application, the authors obtain the boundedness of anisotropic Caldeon-Zygmund operators from HA^φ(Hn) to L^φ(R^n) or from HA^φ(Hn) to itself.
基金supported partly by NNSF of China(Grant No.11371056)supported by NNSF of China(Grant No.11801049)Technology Pro ject of Chongqing Education Committee(Grant No.KJQN201800514)
文摘The main purpose of this paper is to establish, using the Littlewood–Paley–Stein theory(in particular, the Littlewood–Paley–Stein square functions), a Calderón–Torchinsky type theorem for the following Fourier multipliers on anisotropic Hardy spaces Hp(Rn;A) associated with expensive dilation A:■Our main Theorem is the following: Assume that m(ξ) is a function on Rn satisfying ■with s > ζ--1(1/p-1/2). Then Tm is bounded from Hp(Rn;A) to Hp(Rn;A) for all 0 < p ≤ 1 and ■where A* denotes the transpose of A. Here we have used the notations mj(ξ) = m(A*jξ)φ(ξ) and φ(ξ) is a suitable cut-off function on Rn, and Ws(A*) is an anisotropic Sobolev space associated with expansive dilation A* on Rn.
基金supported by National Natural Science Foundation of China (Grant Nos. 11671414, 11271091, 11471040, 11461065, 11661075, 11571039 and 11671185)
文摘Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R^n×R^m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space H~φ_A(R^n× R^m) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the g_λ~*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of H~φ_A(R^n× R^m) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from H~φ_A(R^n× R^m) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from H~φ_A(R^n× R^m) to L~φ(R^n× R^m)and from H~φ_A(R^n×R^m) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on R^n× R^m and are new even for classical product Orlicz-Hardy spaces.
基金supported by NSF of China (Grant No.10571015)RFDP of China (Grant No.20050027025)NSF of Zhejiang Province (Grant No.Y7080325)
文摘Let A be an expansive dilation. We define weakly strongly singular integral kernels and study the action of the operators induced by these kernels on anisotropic Hardy spaces associated with A.
文摘In this paper we give the conditions on the pair (~1, W2) which ensures the boundedness of the anisotropic maximal operator and anisotropic singular integral operators from one generalized Morrey space Mp,w1 to another Mp,w2, 1 〈 p 〈 ∞, and from the space M1,w1 to the weak space M1,w2.