Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ...Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.展开更多
The process of magnetic reconnection in non_periodic three_layer current sheets is studied numerically by using two_dimensional magnetohydrodynamic simulation. The results show that unlike periodic current sheets, it ...The process of magnetic reconnection in non_periodic three_layer current sheets is studied numerically by using two_dimensional magnetohydrodynamic simulation. The results show that unlike periodic current sheets, it is complex unsteady magnetic reconnection. It may be important for solar flare and corona heating.展开更多
The third order accurate upwind compact difference scheme has been applied to the numerical study of the magnetic reconnection process possibly occurring near the interplanetary current sheet, under the framework of t...The third order accurate upwind compact difference scheme has been applied to the numerical study of the magnetic reconnection process possibly occurring near the interplanetary current sheet, under the framework of the two-dimensional compressible magnetohydrodynamics (MHD). Our results here show that the driven reconnection near the current sheet can occur within 10-30 min for the interplanetary high magnetic Reynolds number, RM =2 000-10 000, the stable magnetic reconnection structure can be formed in hour-order of magnitude, and there are some basic properties such as the multiple X-line reconnections, vortical velocity structures, filament current systems, splitting and collapse of the high-density plasma bulk. These results are helpful in understanding and identifying the magnetic reconnection phenomena near the interplanetary current sheets.展开更多
In this investigation effort, we eventually infer that the overall quadrapole pattern of B<sub>y</sub> deflections, in the vicinity of a source in the Earth’s magnetotail, is most likely due to field alig...In this investigation effort, we eventually infer that the overall quadrapole pattern of B<sub>y</sub> deflections, in the vicinity of a source in the Earth’s magnetotail, is most likely due to field aligned currents (FACs) and not to Hall currents associated with an X-type collisionless reconnection. This categorically expressed statement is based upon sufficient observational evidence tightly associated with our own suggested model and the preceded works of the same author. Using representative events measured by satellite, our main aim is to describe the nature of the fundamental mechanism determining the polarity of the B<sub>y</sub> deflections associated with intense earthward ionplasma flows. A major finding is that we either observe magnetic flux rope (MFR) like structures (that is, entities having all the morphological features of ropes; i.e., a dipolar signature of B<sub>z</sub> occurring simultaneously with peaked B<sub>y</sub> and B<sub>total</sub> deflections) or mere B<sub>y</sub> deflections, however, the sign for all these (B<sub>y</sub>deflections) is always determined by the satellite placement in north (positive) or south (negative) plasma sheet. Therefore, the MFR-like structures located earthward of the source are most likely pseudo-MFRs;there is neither a tubular topology nor an axial magnetic field, the B<sub>y</sub> deflections are produced by FACs. According to the presented model, a fundamental concept is that both ions and electrons are simultaneously accelerated at the source site;in turn, the earthward streaming electrons (ions) form a bifurcated electron (ion) FAC just outside the electron diffusion region-EDR (IDR). In this way, inside the IDR (and earthward of the source) positive (negative) B<sub>y</sub> deflections in north (south) plasma sheet (PS) are produced due to FACs, and not to (inward) Hall currents as in the context of an X-line. Moreover, the ions form an “ion jet” within the IDR, while just outside this region they produce positive (negative) B<sub>y</sub> deflections in north (south) PS caused by ion FACs. The ion jet in the IDR is enveloped by the bifurcated electron FAC. Eventually, although the resulting pattern of B<sub>y</sub> deflections, due to both electron and ion FACs, is apparently the same with that resulting from Hall currents (in the X-line model), the underlying natural processes are, however, radically different. Certainly, the dominant “spatial entity” within the IDR is the ion jet-current (and not the Hall-electron current). Additional implications of the ion jets are also discussed.展开更多
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material throu...Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.展开更多
Solar eruptions and the related processes involve magnetic fields and plasma flows of various scales in both time and space. These processes include the convective motions of the mass and magnetic field in the photosp...Solar eruptions and the related processes involve magnetic fields and plasma flows of various scales in both time and space. These processes include the convective motions of the mass and magnetic field in the photosphere, evolutions of magnetic fields in both the chromosphere and the corona prior to and during the disruption of magnetic fields in response to the photospheric motions. These evolutions constitute a whole process of transporting the magnetic energy and the helicity from the photosphere to the corona, and then to interplanetary space. The present work, on the basis of a solar eruption model, discusses these processes, and the related questions, unanswerable at present, but could be the scientific objectives of the space solar missions in the future.展开更多
Magnetic field topology frozen in ideal magnetohydrodynamics (MHD) and its breakage in near-ideal MHD are reviewed in two parts, clarifying and expanding basic concepts. The first part gives a physically complete de...Magnetic field topology frozen in ideal magnetohydrodynamics (MHD) and its breakage in near-ideal MHD are reviewed in two parts, clarifying and expanding basic concepts. The first part gives a physically complete description of the frozen field topology derived from magnetic flux conservation as the fundamental property, treating four conceptually related topics: Eulerian and La- grangian descriptions of three dimensional (3D) MHD, Chandrasekhar-Kendall and Euler-potential field representations, magnetic helicity, and inviscid vortex dynamics as a fluid system in physical contrast to ideal MHD. A corollary of these developments clar- ifies the challenge of achieving a high degree of the frozen-in condition in numerical MHD. The second part treats field-topology breakage centered around the Parker Magnetostatic Theorem on a general incompatibility of a continuous magnetic field with the dual demand of force-free equilibrium and an arbitrarily prescribed, 3D field topology. Preserving field topology as a global con- straint readily results in formation of tangential magnetic discontinuities, or, equivalently, electric current-sheets of zero thickness. A similar incompatibility is present in the steady force-thermal balance of a heated radiating fluid subject to an anisotropic thermal flux conducted strictly along its frozen-in magnetic field in the low-fl limit. In a weakly resistive fluid the thinning of current sheets by these general incompatibilities inevitably results field notwithstanding the small resistivity. Strong Faraday in sheet dissipation, resistive heating and topological changes in the induction drives but also macroscopically limits this mode of energy dissipation, trapping or storing free energy in self-organized ideal-MHD structures. This property of MHD turbulence captured by the Taylor hypothesis is reviewed in relation to the Sun's corona, calling for a basic quantitative description of the breakdown of flux conservation in the low-resistivity limit. A cylindrical initial-boundary value problem provides specificity in the general MHD ideas presented.展开更多
基金supported by NSFC grants(42188101,42174209,42174207)the Specialized Research Fund for State Key Laboratories of Chinathe Strategic Pioneer Program on Space Science II,Chinese Academy of Sciences,grants XDA15350201,XDA15052500.
文摘Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.
文摘The process of magnetic reconnection in non_periodic three_layer current sheets is studied numerically by using two_dimensional magnetohydrodynamic simulation. The results show that unlike periodic current sheets, it is complex unsteady magnetic reconnection. It may be important for solar flare and corona heating.
基金the National Natural Foundation of China (Grant Nos. 49674243 and 49874040).
文摘The third order accurate upwind compact difference scheme has been applied to the numerical study of the magnetic reconnection process possibly occurring near the interplanetary current sheet, under the framework of the two-dimensional compressible magnetohydrodynamics (MHD). Our results here show that the driven reconnection near the current sheet can occur within 10-30 min for the interplanetary high magnetic Reynolds number, RM =2 000-10 000, the stable magnetic reconnection structure can be formed in hour-order of magnitude, and there are some basic properties such as the multiple X-line reconnections, vortical velocity structures, filament current systems, splitting and collapse of the high-density plasma bulk. These results are helpful in understanding and identifying the magnetic reconnection phenomena near the interplanetary current sheets.
文摘In this investigation effort, we eventually infer that the overall quadrapole pattern of B<sub>y</sub> deflections, in the vicinity of a source in the Earth’s magnetotail, is most likely due to field aligned currents (FACs) and not to Hall currents associated with an X-type collisionless reconnection. This categorically expressed statement is based upon sufficient observational evidence tightly associated with our own suggested model and the preceded works of the same author. Using representative events measured by satellite, our main aim is to describe the nature of the fundamental mechanism determining the polarity of the B<sub>y</sub> deflections associated with intense earthward ionplasma flows. A major finding is that we either observe magnetic flux rope (MFR) like structures (that is, entities having all the morphological features of ropes; i.e., a dipolar signature of B<sub>z</sub> occurring simultaneously with peaked B<sub>y</sub> and B<sub>total</sub> deflections) or mere B<sub>y</sub> deflections, however, the sign for all these (B<sub>y</sub>deflections) is always determined by the satellite placement in north (positive) or south (negative) plasma sheet. Therefore, the MFR-like structures located earthward of the source are most likely pseudo-MFRs;there is neither a tubular topology nor an axial magnetic field, the B<sub>y</sub> deflections are produced by FACs. According to the presented model, a fundamental concept is that both ions and electrons are simultaneously accelerated at the source site;in turn, the earthward streaming electrons (ions) form a bifurcated electron (ion) FAC just outside the electron diffusion region-EDR (IDR). In this way, inside the IDR (and earthward of the source) positive (negative) B<sub>y</sub> deflections in north (south) plasma sheet (PS) are produced due to FACs, and not to (inward) Hall currents as in the context of an X-line. Moreover, the ions form an “ion jet” within the IDR, while just outside this region they produce positive (negative) B<sub>y</sub> deflections in north (south) PS caused by ion FACs. The ion jet in the IDR is enveloped by the bifurcated electron FAC. Eventually, although the resulting pattern of B<sub>y</sub> deflections, due to both electron and ion FACs, is apparently the same with that resulting from Hall currents (in the X-line model), the underlying natural processes are, however, radically different. Certainly, the dominant “spatial entity” within the IDR is the ion jet-current (and not the Hall-electron current). Additional implications of the ion jets are also discussed.
基金the National Natural Science Foundation of China.
文摘Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.
基金Supported by the National Basic Research Program of China (Grant No. 2006CB806303)the National Natural Science Foundation of China(Grant Nos. 40636031 and 10873030)+1 种基金the CAS to YNAO (Grant No. KJCX2-YW-T04)the NASA to the Harvard-Smithsonian CfA (GantNo. NNX07AL72G)
文摘Solar eruptions and the related processes involve magnetic fields and plasma flows of various scales in both time and space. These processes include the convective motions of the mass and magnetic field in the photosphere, evolutions of magnetic fields in both the chromosphere and the corona prior to and during the disruption of magnetic fields in response to the photospheric motions. These evolutions constitute a whole process of transporting the magnetic energy and the helicity from the photosphere to the corona, and then to interplanetary space. The present work, on the basis of a solar eruption model, discusses these processes, and the related questions, unanswerable at present, but could be the scientific objectives of the space solar missions in the future.
基金The National Center for Atmospheric Researchis sponsored by the US National Science Foundation
文摘Magnetic field topology frozen in ideal magnetohydrodynamics (MHD) and its breakage in near-ideal MHD are reviewed in two parts, clarifying and expanding basic concepts. The first part gives a physically complete description of the frozen field topology derived from magnetic flux conservation as the fundamental property, treating four conceptually related topics: Eulerian and La- grangian descriptions of three dimensional (3D) MHD, Chandrasekhar-Kendall and Euler-potential field representations, magnetic helicity, and inviscid vortex dynamics as a fluid system in physical contrast to ideal MHD. A corollary of these developments clar- ifies the challenge of achieving a high degree of the frozen-in condition in numerical MHD. The second part treats field-topology breakage centered around the Parker Magnetostatic Theorem on a general incompatibility of a continuous magnetic field with the dual demand of force-free equilibrium and an arbitrarily prescribed, 3D field topology. Preserving field topology as a global con- straint readily results in formation of tangential magnetic discontinuities, or, equivalently, electric current-sheets of zero thickness. A similar incompatibility is present in the steady force-thermal balance of a heated radiating fluid subject to an anisotropic thermal flux conducted strictly along its frozen-in magnetic field in the low-fl limit. In a weakly resistive fluid the thinning of current sheets by these general incompatibilities inevitably results field notwithstanding the small resistivity. Strong Faraday in sheet dissipation, resistive heating and topological changes in the induction drives but also macroscopically limits this mode of energy dissipation, trapping or storing free energy in self-organized ideal-MHD structures. This property of MHD turbulence captured by the Taylor hypothesis is reviewed in relation to the Sun's corona, calling for a basic quantitative description of the breakdown of flux conservation in the low-resistivity limit. A cylindrical initial-boundary value problem provides specificity in the general MHD ideas presented.