The texture evolution,twin crystallographic nature and grain orientation variation during the solution heat treatment process of the 304 stainless steel pipe were studied.It was found that after the solution heat trea...The texture evolution,twin crystallographic nature and grain orientation variation during the solution heat treatment process of the 304 stainless steel pipe were studied.It was found that after the solution heat treatment,the texture type clearly changed,and the texture strength was greatly increased.During the solution heat treatment process,grain boundaries migrated along the orientation available for grain growth,giving rise to abnormal growth of some grains through merging with the adjacent small grains.After the solution heat treatment,more<111>60°twins formed in the microstructures of the 304 stainless steel pipe,and the fraction of the twin boundaries showed a pronounced increase.Analysis of the twin crystallographic nature of the FCC crystals showed that four kinds of twin variants can be formed within austenite parent grains,and twelve kinds of misorientations can be formed between the austenite parent grains and the secondary twins.展开更多
Thin-walled copper tubes are usually produced by multi-pass float-plug drawing deformation.In general,the annealing treatment subsequently is necessary to release the stored energy and adjusts the microstructure.In th...Thin-walled copper tubes are usually produced by multi-pass float-plug drawing deformation.In general,the annealing treatment subsequently is necessary to release the stored energy and adjusts the microstructure.In this study,an investigation on the evolution of annealing twins as well as textures in the thin-walled(Φ6 mm×0.3 mm)copper tube underwent holding time-free heat treatment was reported.Electron backscattered diffraction analysis reveals that a large number ofΣ3 boundaries(600<111>twin relationship)are produced at the early stage of heat treatment,which is due to the lower boundary energy.With the recrystallization proceeding,the migration rate of grain boundaries decreases on account of the grain growth;meanwhile,the uniqueΣ9 boundaries(38.9°<110>relationship)are formed due to the interaction of theΣ3 boundaries.As a result,the number fractions ofΣ3 boundaries and high-angle grain boundaries decrease rapidly.During the grain growth stage,a strong recrystallization texture was formed due to the fact that the grains of Goss orientation have a growth advantage over the others.As a result,the initial copper texture was transferred into the Goss texture in domination.展开更多
Grain refinement usually makes the materials stronger,while ductility has a dramatic loss.Here,a superior tensile strength–ductility synergy in a fully recrystallized ultrafine-grained(UFG)Al_(0.1)CrFeCoNi with abund...Grain refinement usually makes the materials stronger,while ductility has a dramatic loss.Here,a superior tensile strength–ductility synergy in a fully recrystallized ultrafine-grained(UFG)Al_(0.1)CrFeCoNi with abundant annealing twins was achieved by cold rolling at room temperature and short-time annealing.The microstructure characterization using electron backscattered scattering diffraction demonstrates that abundant geometrically necessary dislocations(GNDs)gather around the grain boundaries and twin boundaries after tensile deformation.Although coarse-grained(CG)samples undergo a larger plastic deformation than UFG samples,the GND density decreases with grain size ranging from UFG to CG.Transmission electron microscopy results reveal that the annealing twin boundary,which effectively hinders the dislocation slip and stores dislocation in grain interior,and the activation of multiple deformation twins are responsible for the superior strength–ductility synergy and work hardening ability.In addition,the yield strength of fully recrystallized Al_(0.1)CrFeCoNi follows a Hall–Petch relationship(σ_y=24+676d^(–1/2)),where d takes into account both grain boundaries and annealing twin boundaries.The strengthening effects of grain boundaries and annealing twin boundaries were also evaluated separately.展开更多
Microstructures and mechanical properties of the 25Mn twinning induced plasticity (TWIP) steel at different annealing temperatures were investigated. The results indicated that when the annealing temperature was 100...Microstructures and mechanical properties of the 25Mn twinning induced plasticity (TWIP) steel at different annealing temperatures were investigated. The results indicated that when the annealing temperature was 1000℃, the 25Mn steel showed excellent comprehensive mechanical properties, the tensile strength was about 640 MPa, the yield strength was higher than 255 MPa, and the elongation was above 82%. The microstructure was analyzed by optical microscopy (OM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Before deformation the microstructure was composed of austenitic matrix and annealing twins at room temperature; at the same time, a significant amount of annealing twins and stacking faults were observed by TEM. Mechanical twins played a dominant role in deformation and as a result the mechanical properties were found to be excellent.展开更多
The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investig...The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test, micro hardness test, and Transmission Electron Microscope (TEM). The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃, while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃. Annealing temperature had stronger effect on mechanical properties than annealing time. TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min, but the size and density of precipitates had no noticeable change with annealing temperature and time. Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min, and its scale increased with annealing temperature. Nano-sized annealing twins were observed. The mechanisms that controlled the mechanical behaviors of the steel were discussed.展开更多
The restoration mechanism of twin-induced plasticity(TWIP)steel during friction stir welding(FSW)changed with the degree of the deformation,and the microstructure evolution and dynamic recrystallization are complex an...The restoration mechanism of twin-induced plasticity(TWIP)steel during friction stir welding(FSW)changed with the degree of the deformation,and the microstructure evolution and dynamic recrystallization are complex and unclear.In this paper,the electron backscattered diffraction and transmission electron microscopy techniques were used to evaluate the dynamic grain structure of FSW joint of TWIP steel.The results showed that the dynamic recrystallization mechanisms in TWIP steel during FSW contained discontinuous dynamic recrystallization(DDRX)and continuous dynamic recrystallization(CDRX).The recrystallization mechanism transitioned from DDRX at the initial deformation stage to DDRX and CDRX at the middle deformation stage,eventually becoming primarily CDRX at the end deformation stage.Numerous annealing twin boundaries(ATBs)were formed within the joint,and the straight ATBs primarily resulted from grain growth accidents,while cluster-shaped ATBs were formed through re-excitations and decomposition of specific grain boundaries.展开更多
The oxidation behavior of Hastelloy C-2000 alloy was investigated in air at 800 °C and 1000 °C for 100 h, respectively. Oxidation kinetics and oxide scales morphologies were examined by mass gain measurement...The oxidation behavior of Hastelloy C-2000 alloy was investigated in air at 800 °C and 1000 °C for 100 h, respectively. Oxidation kinetics and oxide scales morphologies were examined by mass gain measurement, scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The oxidation behavior of the alloy approximately follows a parabolic rate law. Moreover, annealing twins defect structure in matrix deteriorates the oxidation resistance of alloy due to the improvement of diffusion rates for alloying elements and oxygen atoms. At 800 °C, the microstructure is primarily composed of Ni O and Cr1.3Fe0.7O6 and the initial annealing twins structure is visible and Mo-rich phases are emerged to approach boundary of oxide scales. At 1000 °C, however, the morphology microstructure of oxide scales consists of oxide particle with fine Cr oxides and large Ni oxides by inlaying each other, whilst Mo-rich phases hardly appear closing to the interface of oxide scales.展开更多
The effects of electric-field treatment on the microstructure and deformation behavior of a nickel-base superalloy were summarized.The results show that the electric-field treatment increases the ductility of the supe...The effects of electric-field treatment on the microstructure and deformation behavior of a nickel-base superalloy were summarized.The results show that the electric-field treatment increases the ductility of the superalloy but has no evident influence on its static strength at both room and elevated temperatures,while,the strength increases but elongation changes weekly with the increasing tensile strain rate.It is found that the direction of microcrack propagation can be changed by the presence of the annealing twins during the tensile deformation,and it causes the increasing of the plastic deformation energy and delay of the fracture,which is considered as the reason for the increasing the ductility.展开更多
The strain induced ferrite formed under different conditions was observed with SEM and optical microscope. The nucleation sites of strain induced ferrite include grain boundary, grain inside, deformed band and annea...The strain induced ferrite formed under different conditions was observed with SEM and optical microscope. The nucleation sites of strain induced ferrite include grain boundary, grain inside, deformed band and annealing twin boundary. The shapes of the ferrite accordingly are equiaxed irregular polygonal, strip shaped and acicular.展开更多
The strain-induced ferrite formed under different conditions was observed with SEM and optical microscope.The nucleation sites of strain-induced ferrite include grain boundary,grain inside,deformed band and annealing ...The strain-induced ferrite formed under different conditions was observed with SEM and optical microscope.The nucleation sites of strain-induced ferrite include grain boundary,grain inside,deformed band and annealing twin boundary.The shapes of the ferrite accordingly are equiaxed irregular polygonal,strip-shaped and acicular.展开更多
The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation ...The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation textures of pre-drawn thin-walled copper tube are mainly composed of Copper and Y components,while with the increase of temperatures,the textures are transformed into a strong Goss texture gradually.The high-resolution microstructural characterizations indicate that the new Goss recrystallized grains nucleate and grow up within the deformed Copper grains and Y grains in different mechanisms,respectively.The tensile strength of the thin-walled copper tube decreases gradually with the increase of the temperature,while the elongation increases first and then decreases sharply due to the action of grain sizes and texture components.展开更多
Nanocrystalline nickel coatings with grain size of 50 nm were annealed in vacuum at 200 ℃ and 400 ℃ for 10 min, Their microstructures were investigated by transmission electron microscopy (TEM). And their corrosio...Nanocrystalline nickel coatings with grain size of 50 nm were annealed in vacuum at 200 ℃ and 400 ℃ for 10 min, Their microstructures were investigated by transmission electron microscopy (TEM). And their corrosion behaviors were studied by means of polarization and electrochemical impedance spectroscopy (EIS), The results showed that their grain size grew up to about 60 nm (200 ℃) and 500 nm (400 ℃), respectively, The specimen annealed at 200 ℃ possessed higher density of twins in compared with the counterparts of as-deposited and annealed at 400 ℃, The normal grain size effect on the corrosion behavior was not observed, However, it was found that the corrosion resistance of the coating linearly changed with the density of twins.展开更多
The popularity of quadrotor Unmanned Aerial Vehicles(UAVs)stems from their simple propulsion systems and structural design.However,their complex and nonlinear dynamic behavior presents a significant challenge for cont...The popularity of quadrotor Unmanned Aerial Vehicles(UAVs)stems from their simple propulsion systems and structural design.However,their complex and nonlinear dynamic behavior presents a significant challenge for control,necessitating sophisticated algorithms to ensure stability and accuracy in flight.Various strategies have been explored by researchers and control engineers,with learning-based methods like reinforcement learning,deep learning,and neural networks showing promise in enhancing the robustness and adaptability of quadrotor control systems.This paper investigates a Reinforcement Learning(RL)approach for both high and low-level quadrotor control systems,focusing on attitude stabilization and position tracking tasks.A novel reward function and actor-critic network structures are designed to stimulate high-order observable states,improving the agent’s understanding of the quadrotor’s dynamics and environmental constraints.To address the challenge of RL hyper-parameter tuning,a new framework is introduced that combines Simulated Annealing(SA)with a reinforcement learning algorithm,specifically Simulated Annealing-Twin Delayed Deep Deterministic Policy Gradient(SA-TD3).This approach is evaluated for path-following and stabilization tasks through comparative assessments with two commonly used control methods:Backstepping and Sliding Mode Control(SMC).While the implementation of the well-trained agents exhibited unexpected behavior during real-world testing,a reduced neural network used for altitude control was successfully implemented on a Parrot Mambo mini drone.The results showcase the potential of the proposed SA-TD3 framework for real-world applications,demonstrating improved stability and precision across various test scenarios and highlighting its feasibility for practical deployment.展开更多
Dynamic recrystallization (DRX) mechanisms of a nickel-based corrosion-resistant alloy, G3, were investigated by hot compression tests with temperatures from 1050 to 1200 ℃ and strain rates from 0.1 to 5.0 s-1. Def...Dynamic recrystallization (DRX) mechanisms of a nickel-based corrosion-resistant alloy, G3, were investigated by hot compression tests with temperatures from 1050 to 1200 ℃ and strain rates from 0.1 to 5.0 s-1. Deformation microstructure was observed at the strain from 0.05 to 0.75 by electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). Work hardening rate curves were calculated to analyze the effect of deformation parameters on the nucleation process. Results indicate that strain-induced grain boundary migration is the principal mechanism of DRX. Large annealing twins promote nucleation by accumulating dis- locations and fragmenting into cell blocks. Continuous dynamic recrystallization is also detected to be an effective supplement mechanism, especially at low temperature and high strain rate.展开更多
Nickel-free high-manganese austenitic Fe–24.4Mn–4.04Al–0.057C steel was produced by smelting,and the homogenized forged billet was hot-rolled.The plastic deformation mechanism was investigated through tensile testi...Nickel-free high-manganese austenitic Fe–24.4Mn–4.04Al–0.057C steel was produced by smelting,and the homogenized forged billet was hot-rolled.The plastic deformation mechanism was investigated through tensile testing of the hot-rolled sample.Different characterization techniques such as scanning electron microscopy,transmission electron microscopy,electron backscattered diffraction,and X-ray diffraction were used to analyze the microstructural evolution of steel under different strain levels.The steel had a single austenite phase,which was stable during deformation.After hot rolling,annealing twins were observed in the microstructure of the steel.The steel showed an excellent combination of mechanical properties,like a tensile strength of 527 MPa,impact energy of 203 J at−196℃,and an elongation of 67%till fracture.At the initial deformation stage,the dislocations were generated within the austenite grains,entangled and accumulated at the grain boundaries and annealing twin boundaries.Annealing twins participated in plastic deformation and hindered the dislocation movement.As the deformation progressed,the dislocation slip was hindered and produced stress concentration,and the stacking faults evolved into mechanical twins,which released the stress concentration and delayed the necking.展开更多
基金Project(51875547)supported by the National Natural Science Foundation of China。
文摘The texture evolution,twin crystallographic nature and grain orientation variation during the solution heat treatment process of the 304 stainless steel pipe were studied.It was found that after the solution heat treatment,the texture type clearly changed,and the texture strength was greatly increased.During the solution heat treatment process,grain boundaries migrated along the orientation available for grain growth,giving rise to abnormal growth of some grains through merging with the adjacent small grains.After the solution heat treatment,more<111>60°twins formed in the microstructures of the 304 stainless steel pipe,and the fraction of the twin boundaries showed a pronounced increase.Analysis of the twin crystallographic nature of the FCC crystals showed that four kinds of twin variants can be formed within austenite parent grains,and twelve kinds of misorientations can be formed between the austenite parent grains and the secondary twins.
基金financially supported by the Natural Science Foundation of Shandong Province under Grant No.ZR2018MEE005。
文摘Thin-walled copper tubes are usually produced by multi-pass float-plug drawing deformation.In general,the annealing treatment subsequently is necessary to release the stored energy and adjusts the microstructure.In this study,an investigation on the evolution of annealing twins as well as textures in the thin-walled(Φ6 mm×0.3 mm)copper tube underwent holding time-free heat treatment was reported.Electron backscattered diffraction analysis reveals that a large number ofΣ3 boundaries(600<111>twin relationship)are produced at the early stage of heat treatment,which is due to the lower boundary energy.With the recrystallization proceeding,the migration rate of grain boundaries decreases on account of the grain growth;meanwhile,the uniqueΣ9 boundaries(38.9°<110>relationship)are formed due to the interaction of theΣ3 boundaries.As a result,the number fractions ofΣ3 boundaries and high-angle grain boundaries decrease rapidly.During the grain growth stage,a strong recrystallization texture was formed due to the fact that the grains of Goss orientation have a growth advantage over the others.As a result,the initial copper texture was transferred into the Goss texture in domination.
基金financially supported by the Sichuan Science and Technology Program(No.2021YFH0182)the Open Project Program of Anhui Province Key Laboratory of Metallurgical Engineering&Resources Recycling(Anhui University of Technology,No.SKF22–02)+3 种基金the State Key Laboratory of Solidification Processing(Northwestern Polytechnical University,No.SKLSP202115)the Local Science and Technology Development Project of Shenzhen Guided by the Central Government(2021Szvup120)the Fundamental Research Funds for the Central Universities(Nos.2682021CX102 and 2682021GF026)the National Natural Science Foundation of China(No.11627901)。
文摘Grain refinement usually makes the materials stronger,while ductility has a dramatic loss.Here,a superior tensile strength–ductility synergy in a fully recrystallized ultrafine-grained(UFG)Al_(0.1)CrFeCoNi with abundant annealing twins was achieved by cold rolling at room temperature and short-time annealing.The microstructure characterization using electron backscattered scattering diffraction demonstrates that abundant geometrically necessary dislocations(GNDs)gather around the grain boundaries and twin boundaries after tensile deformation.Although coarse-grained(CG)samples undergo a larger plastic deformation than UFG samples,the GND density decreases with grain size ranging from UFG to CG.Transmission electron microscopy results reveal that the annealing twin boundary,which effectively hinders the dislocation slip and stores dislocation in grain interior,and the activation of multiple deformation twins are responsible for the superior strength–ductility synergy and work hardening ability.In addition,the yield strength of fully recrystallized Al_(0.1)CrFeCoNi follows a Hall–Petch relationship(σ_y=24+676d^(–1/2)),where d takes into account both grain boundaries and annealing twin boundaries.The strengthening effects of grain boundaries and annealing twin boundaries were also evaluated separately.
基金the National Natural Science Foundation of China (No.50575022)the Specialized Research Foundation for the Doctoral Program of Higher Education of China (No.20040008024)the National High-Tech Research and Development Program of China (No.2008AA03E502)
文摘Microstructures and mechanical properties of the 25Mn twinning induced plasticity (TWIP) steel at different annealing temperatures were investigated. The results indicated that when the annealing temperature was 1000℃, the 25Mn steel showed excellent comprehensive mechanical properties, the tensile strength was about 640 MPa, the yield strength was higher than 255 MPa, and the elongation was above 82%. The microstructure was analyzed by optical microscopy (OM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Before deformation the microstructure was composed of austenitic matrix and annealing twins at room temperature; at the same time, a significant amount of annealing twins and stacking faults were observed by TEM. Mechanical twins played a dominant role in deformation and as a result the mechanical properties were found to be excellent.
基金Funded by of Liaoning Science and Technology Bureau(No.2007221007)
文摘The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test, micro hardness test, and Transmission Electron Microscope (TEM). The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃, while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃. Annealing temperature had stronger effect on mechanical properties than annealing time. TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min, but the size and density of precipitates had no noticeable change with annealing temperature and time. Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min, and its scale increased with annealing temperature. Nano-sized annealing twins were observed. The mechanisms that controlled the mechanical behaviors of the steel were discussed.
基金supported by the National Natural Science Foundation of China(Nos.52034005,52227807,52104383,and 52222410)the Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)+1 种基金the Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06 and 2022JBGS2-01)the Scientific Research Program for Youth Innovation Team Construction of Shaanxi Provincial Department of Education(No.21JP058).
文摘The restoration mechanism of twin-induced plasticity(TWIP)steel during friction stir welding(FSW)changed with the degree of the deformation,and the microstructure evolution and dynamic recrystallization are complex and unclear.In this paper,the electron backscattered diffraction and transmission electron microscopy techniques were used to evaluate the dynamic grain structure of FSW joint of TWIP steel.The results showed that the dynamic recrystallization mechanisms in TWIP steel during FSW contained discontinuous dynamic recrystallization(DDRX)and continuous dynamic recrystallization(CDRX).The recrystallization mechanism transitioned from DDRX at the initial deformation stage to DDRX and CDRX at the middle deformation stage,eventually becoming primarily CDRX at the end deformation stage.Numerous annealing twin boundaries(ATBs)were formed within the joint,and the straight ATBs primarily resulted from grain growth accidents,while cluster-shaped ATBs were formed through re-excitations and decomposition of specific grain boundaries.
基金Project(2013AA031004)supported by the National High-tech Research and Development Program of China
文摘The oxidation behavior of Hastelloy C-2000 alloy was investigated in air at 800 °C and 1000 °C for 100 h, respectively. Oxidation kinetics and oxide scales morphologies were examined by mass gain measurement, scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The oxidation behavior of the alloy approximately follows a parabolic rate law. Moreover, annealing twins defect structure in matrix deteriorates the oxidation resistance of alloy due to the improvement of diffusion rates for alloying elements and oxygen atoms. At 800 °C, the microstructure is primarily composed of Ni O and Cr1.3Fe0.7O6 and the initial annealing twins structure is visible and Mo-rich phases are emerged to approach boundary of oxide scales. At 1000 °C, however, the morphology microstructure of oxide scales consists of oxide particle with fine Cr oxides and large Ni oxides by inlaying each other, whilst Mo-rich phases hardly appear closing to the interface of oxide scales.
文摘The effects of electric-field treatment on the microstructure and deformation behavior of a nickel-base superalloy were summarized.The results show that the electric-field treatment increases the ductility of the superalloy but has no evident influence on its static strength at both room and elevated temperatures,while,the strength increases but elongation changes weekly with the increasing tensile strain rate.It is found that the direction of microcrack propagation can be changed by the presence of the annealing twins during the tensile deformation,and it causes the increasing of the plastic deformation energy and delay of the fracture,which is considered as the reason for the increasing the ductility.
文摘The strain induced ferrite formed under different conditions was observed with SEM and optical microscope. The nucleation sites of strain induced ferrite include grain boundary, grain inside, deformed band and annealing twin boundary. The shapes of the ferrite accordingly are equiaxed irregular polygonal, strip shaped and acicular.
文摘The strain-induced ferrite formed under different conditions was observed with SEM and optical microscope.The nucleation sites of strain-induced ferrite include grain boundary,grain inside,deformed band and annealing twin boundary.The shapes of the ferrite accordingly are equiaxed irregular polygonal,strip-shaped and acicular.
基金financially supported by the China Postdoctoral Science Foundation(No.2019M662276)the Chinese Academy of Science and Technology Service Network Planning(No.KFJ-STS-QYZD-145)。
文摘The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation textures of pre-drawn thin-walled copper tube are mainly composed of Copper and Y components,while with the increase of temperatures,the textures are transformed into a strong Goss texture gradually.The high-resolution microstructural characterizations indicate that the new Goss recrystallized grains nucleate and grow up within the deformed Copper grains and Y grains in different mechanisms,respectively.The tensile strength of the thin-walled copper tube decreases gradually with the increase of the temperature,while the elongation increases first and then decreases sharply due to the action of grain sizes and texture components.
基金the financial support from the National Basic Research Program of China(No.2014CB643301)the National Natural Science Foundation of China(Nos.50971050 and 51001036)+3 种基金the Program for New Century Excellent Talents in University(No.NCET-11-0575)the Ministry of Science and Technology of the People’s Republic of China(No.2012FY113000)the Key Laboratory of Superlight Materials and Surface Technology(Harbin Engineering University,No.HEUCF20151011)Ministry of Education(No.HEUCF20151011)
文摘Nanocrystalline nickel coatings with grain size of 50 nm were annealed in vacuum at 200 ℃ and 400 ℃ for 10 min, Their microstructures were investigated by transmission electron microscopy (TEM). And their corrosion behaviors were studied by means of polarization and electrochemical impedance spectroscopy (EIS), The results showed that their grain size grew up to about 60 nm (200 ℃) and 500 nm (400 ℃), respectively, The specimen annealed at 200 ℃ possessed higher density of twins in compared with the counterparts of as-deposited and annealed at 400 ℃, The normal grain size effect on the corrosion behavior was not observed, However, it was found that the corrosion resistance of the coating linearly changed with the density of twins.
基金supported by Princess Nourah Bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R135)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The popularity of quadrotor Unmanned Aerial Vehicles(UAVs)stems from their simple propulsion systems and structural design.However,their complex and nonlinear dynamic behavior presents a significant challenge for control,necessitating sophisticated algorithms to ensure stability and accuracy in flight.Various strategies have been explored by researchers and control engineers,with learning-based methods like reinforcement learning,deep learning,and neural networks showing promise in enhancing the robustness and adaptability of quadrotor control systems.This paper investigates a Reinforcement Learning(RL)approach for both high and low-level quadrotor control systems,focusing on attitude stabilization and position tracking tasks.A novel reward function and actor-critic network structures are designed to stimulate high-order observable states,improving the agent’s understanding of the quadrotor’s dynamics and environmental constraints.To address the challenge of RL hyper-parameter tuning,a new framework is introduced that combines Simulated Annealing(SA)with a reinforcement learning algorithm,specifically Simulated Annealing-Twin Delayed Deep Deterministic Policy Gradient(SA-TD3).This approach is evaluated for path-following and stabilization tasks through comparative assessments with two commonly used control methods:Backstepping and Sliding Mode Control(SMC).While the implementation of the well-trained agents exhibited unexpected behavior during real-world testing,a reduced neural network used for altitude control was successfully implemented on a Parrot Mambo mini drone.The results showcase the potential of the proposed SA-TD3 framework for real-world applications,demonstrating improved stability and precision across various test scenarios and highlighting its feasibility for practical deployment.
基金financially supported by the National Natural Science Foundation of China(No.51301085)the Doctoral Scientific Research Foundation of Nanjing Institute of Technology(No.YKJ201305)
文摘Dynamic recrystallization (DRX) mechanisms of a nickel-based corrosion-resistant alloy, G3, were investigated by hot compression tests with temperatures from 1050 to 1200 ℃ and strain rates from 0.1 to 5.0 s-1. Deformation microstructure was observed at the strain from 0.05 to 0.75 by electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). Work hardening rate curves were calculated to analyze the effect of deformation parameters on the nucleation process. Results indicate that strain-induced grain boundary migration is the principal mechanism of DRX. Large annealing twins promote nucleation by accumulating dis- locations and fragmenting into cell blocks. Continuous dynamic recrystallization is also detected to be an effective supplement mechanism, especially at low temperature and high strain rate.
基金supported by the National Key Research and Development Program of China(No.2017YFB0304900).
文摘Nickel-free high-manganese austenitic Fe–24.4Mn–4.04Al–0.057C steel was produced by smelting,and the homogenized forged billet was hot-rolled.The plastic deformation mechanism was investigated through tensile testing of the hot-rolled sample.Different characterization techniques such as scanning electron microscopy,transmission electron microscopy,electron backscattered diffraction,and X-ray diffraction were used to analyze the microstructural evolution of steel under different strain levels.The steel had a single austenite phase,which was stable during deformation.After hot rolling,annealing twins were observed in the microstructure of the steel.The steel showed an excellent combination of mechanical properties,like a tensile strength of 527 MPa,impact energy of 203 J at−196℃,and an elongation of 67%till fracture.At the initial deformation stage,the dislocations were generated within the austenite grains,entangled and accumulated at the grain boundaries and annealing twin boundaries.Annealing twins participated in plastic deformation and hindered the dislocation movement.As the deformation progressed,the dislocation slip was hindered and produced stress concentration,and the stacking faults evolved into mechanical twins,which released the stress concentration and delayed the necking.