ABSTRACT Using data from 17 coupled models and nine sets of corresponding Atmospheric Model Intercomparison Project (AMIP) results, we investigated annual and seasonal variation biases in the upper 50 m of the sout...ABSTRACT Using data from 17 coupled models and nine sets of corresponding Atmospheric Model Intercomparison Project (AMIP) results, we investigated annual and seasonal variation biases in the upper 50 m of the south-central equatorial Pacific, with a focus on the double-ITCZ bias, and examined the causes for the amplitude biases by using heat budget analysis. The results showed that, in the research region, most of the models simulate SSTs that are higher than or similar to observed. The simulated seasonal phase is close to that observed, but the amplitudes of more than half of the model results are larger than or equal to observations. Heat budget analysis demonstrated that strong shortwave radiation in individual atmospheric models is the main factor that leads to high SST values and that weak southward cold advection is an important mechanism for maintaining a high SST. For seasonal circulation, large surface shortwave radiation amplitudes cause large SST amplitudes.展开更多
The yield production and energy budget of agroecosystem was carried out at three different climatic regions, i.e., tropical, sub-tropical, and temperate in Garhwal Himalaya, India. The total human population was the h...The yield production and energy budget of agroecosystem was carried out at three different climatic regions, i.e., tropical, sub-tropical, and temperate in Garhwal Himalaya, India. The total human population was the highest (1 140) in tropical region, followed by 464 in temperate region, and 374 in sub-tropical region. Livestock population had also a similar trend with human population in each climatic region, which was 870, 290, and 188 in the tropical, temperate, and sub-tropical regions, respectively, in winter season, the crop production was the highest (2 332 kg hat yr-l) for Triticum aestivum in tropical region followed by 1 716 kg ha^-1 yr^-1 in sub-tropical region, and 1 473 kg ha^-1 yr^-1 in temperate region. The associated crops were Itordeurn vulgate, Brassica caml 'stris, and Pisum sativa. However, in summer season, the most contributing crop was Oryza sativa, which had also the highest production in tropical region followed by sub-tropical region, and temperate region, i.e., 1 160, 1096, and 1 076 kg ha^-1 yr^-1, respectively. Other growing crops were Elusine coracana, Vigna mugo, Glycine soja, and Echnochlolafrumentaceae. Brassiea rugosa was the only crop grown in tropical region between the period of winter and summer season. The total root production of crops in each climatic region was the highest in tropical region (1 846.2 kg ha^-1 yr^-1), followed by temperate region (1 841.5 kg ha^-1 yr^-1) and sub-tropical region (1442.5 kg ha^-1 yr^-1). However, shoot components of crops were 20 241.5, 17 847.0, and 1 188.3 kg ha^-1 yr^-1, which recorded parallel to root in each climatic region. The root and shoot components of weed decreased with increasing altitudes, which were 105.39 and 1150.5 kg ha^-1 yr^-1 in tropical region, 94.55 and 1147.5 kg ha^-1 yr^-1 in sub-tropical region, and 73.33 and 871.5 kg ha^-1 yr^-1 in temperate region for root and shoot, respectively. In the energy inputs, the most contribution was of compost in each climatic region. Among the region, the highest input of compost was in temperate region followed by sub-tropical, and the lowest in temperate region. The fertilizer input was only recorded from tropical region because of its close connection with market and easy accessibility to the farmer compared to subropical and temperate regions. The energy input ranged from 0.39×10^5 to 0.44× 10^5 MJ ha^-1 (human labour), 0.84× 10^5 to 1.09× 10^5 MJ ha^-1 (bullock labour), 0.36×10^5 to 0.45×10^5 MJ ha^-1 (seed), 16.65 × 10^5 to 32.65 ×10^5 MJ ha^-1 (compost), while output ranged from 8.44 × 10^5 to 11.01 × 10^5 MJ ha^-1 (agronomic yield), and 14.22× 10^5 to 19.35 ×10^5 MJ ha^-1 (crop-residue). The total input was the highest in temperate region, followed by subtropical and tropical region, and the highest output was in tropical region and the lowest in sub-tropical region.展开更多
基金supported by the Global Change Research Great Scientific Research Plan Program: "Development and Evaluation of High Resolution Climate Models" (Grant No.2010CB951904)the National Natural Science Foundation of China (Grant Nos.41075059 and 41023002)
文摘ABSTRACT Using data from 17 coupled models and nine sets of corresponding Atmospheric Model Intercomparison Project (AMIP) results, we investigated annual and seasonal variation biases in the upper 50 m of the south-central equatorial Pacific, with a focus on the double-ITCZ bias, and examined the causes for the amplitude biases by using heat budget analysis. The results showed that, in the research region, most of the models simulate SSTs that are higher than or similar to observed. The simulated seasonal phase is close to that observed, but the amplitudes of more than half of the model results are larger than or equal to observations. Heat budget analysis demonstrated that strong shortwave radiation in individual atmospheric models is the main factor that leads to high SST values and that weak southward cold advection is an important mechanism for maintaining a high SST. For seasonal circulation, large surface shortwave radiation amplitudes cause large SST amplitudes.
文摘The yield production and energy budget of agroecosystem was carried out at three different climatic regions, i.e., tropical, sub-tropical, and temperate in Garhwal Himalaya, India. The total human population was the highest (1 140) in tropical region, followed by 464 in temperate region, and 374 in sub-tropical region. Livestock population had also a similar trend with human population in each climatic region, which was 870, 290, and 188 in the tropical, temperate, and sub-tropical regions, respectively, in winter season, the crop production was the highest (2 332 kg hat yr-l) for Triticum aestivum in tropical region followed by 1 716 kg ha^-1 yr^-1 in sub-tropical region, and 1 473 kg ha^-1 yr^-1 in temperate region. The associated crops were Itordeurn vulgate, Brassica caml 'stris, and Pisum sativa. However, in summer season, the most contributing crop was Oryza sativa, which had also the highest production in tropical region followed by sub-tropical region, and temperate region, i.e., 1 160, 1096, and 1 076 kg ha^-1 yr^-1, respectively. Other growing crops were Elusine coracana, Vigna mugo, Glycine soja, and Echnochlolafrumentaceae. Brassiea rugosa was the only crop grown in tropical region between the period of winter and summer season. The total root production of crops in each climatic region was the highest in tropical region (1 846.2 kg ha^-1 yr^-1), followed by temperate region (1 841.5 kg ha^-1 yr^-1) and sub-tropical region (1442.5 kg ha^-1 yr^-1). However, shoot components of crops were 20 241.5, 17 847.0, and 1 188.3 kg ha^-1 yr^-1, which recorded parallel to root in each climatic region. The root and shoot components of weed decreased with increasing altitudes, which were 105.39 and 1150.5 kg ha^-1 yr^-1 in tropical region, 94.55 and 1147.5 kg ha^-1 yr^-1 in sub-tropical region, and 73.33 and 871.5 kg ha^-1 yr^-1 in temperate region for root and shoot, respectively. In the energy inputs, the most contribution was of compost in each climatic region. Among the region, the highest input of compost was in temperate region followed by sub-tropical, and the lowest in temperate region. The fertilizer input was only recorded from tropical region because of its close connection with market and easy accessibility to the farmer compared to subropical and temperate regions. The energy input ranged from 0.39×10^5 to 0.44× 10^5 MJ ha^-1 (human labour), 0.84× 10^5 to 1.09× 10^5 MJ ha^-1 (bullock labour), 0.36×10^5 to 0.45×10^5 MJ ha^-1 (seed), 16.65 × 10^5 to 32.65 ×10^5 MJ ha^-1 (compost), while output ranged from 8.44 × 10^5 to 11.01 × 10^5 MJ ha^-1 (agronomic yield), and 14.22× 10^5 to 19.35 ×10^5 MJ ha^-1 (crop-residue). The total input was the highest in temperate region, followed by subtropical and tropical region, and the highest output was in tropical region and the lowest in sub-tropical region.
基金国家重点基础研究发展规划(2005CB422003)国家自然科学基金(40875005)+3 种基金中科院知识创新工程重要方向项目(KZCX2-YW-Q11-01)甘肃省科技重大专项(援藏项目)欧盟第七框架项目(Call FP7-ENV-2007-1 Grant nr.212921)国家自然科学基金国际(地区)合作与交流项目(40810059006)