The study focused on the detection of indicators of climate change in 24-hourly annual maximum series (AMS) rainfall data collected for 36 years (1982-2017) for Warri Township, using different statistical methods yiel...The study focused on the detection of indicators of climate change in 24-hourly annual maximum series (AMS) rainfall data collected for 36 years (1982-2017) for Warri Township, using different statistical methods yielded a statistically insignificant positive mild trend. The IMD and MCIMD downscaled model’s time series data respectively produced MK statistics varying from 1.403 to 1.4729, and 1.403 to 1.463 which were less than the critical Z-value of 1.96. Also, the slope magnitude obtained showed a mild increasing trend in variation from 0.0189 to 0.3713, and 0.0175 to 0.5426, with the rate of change in rainfall intensity at 24 hours duration as 0.4536 and 0.42 mm/hr.year (4.536 and 4.2 mm/decade) for the IMD and the MCIMD time series data, respectively. The trend change point date occurred in the year 2000 from the distribution-free CUSUM test with the trend maintaining a significant and steady increase from 2010 to 2015. Thus, this study established the existence of a trend, which is an indication of a changing climate, and satisfied the condition for rainfall Non-stationary intensity-duration-frequency (NS-IDF) modeling required for infrastructural design for combating flooding events.展开更多
This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the ...This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the intensity levels, the open-access R-studio software was used based on the General Extreme Value (GEV) distribution function. Among the four linear parameter models adopted for integrating time as a covariate, the fourth linear model incorporating scale and location with the shape function constant produced the least corrected Akaike Information Criteria (AICc), varying between 306.191 to 101.497 for 15 and 1440 minutes, respectively, selected for calibration of the GEV distribution equation. The non-stationary intensities yielded higher values above those of stationary models, proving that the assumption of stationary IDF models underestimated extreme events. The difference of 13.71 mm/hr (22.71%) to 14.26 mm/hr (17.0%) intensities implies an underestimation of the peak flood from a stationary IDF curve. The statistical difference at a 95% confidence level between stationary and non-stationary models was significant, confirming evidence of climatic change influenced by time-variant parameters. Consequently, emphasis should be on applying shorter-duration storms for design purposes occurring with higher intensities to help reduce the flood risk and resultant infrastructural failures.展开更多
文摘The study focused on the detection of indicators of climate change in 24-hourly annual maximum series (AMS) rainfall data collected for 36 years (1982-2017) for Warri Township, using different statistical methods yielded a statistically insignificant positive mild trend. The IMD and MCIMD downscaled model’s time series data respectively produced MK statistics varying from 1.403 to 1.4729, and 1.403 to 1.463 which were less than the critical Z-value of 1.96. Also, the slope magnitude obtained showed a mild increasing trend in variation from 0.0189 to 0.3713, and 0.0175 to 0.5426, with the rate of change in rainfall intensity at 24 hours duration as 0.4536 and 0.42 mm/hr.year (4.536 and 4.2 mm/decade) for the IMD and the MCIMD time series data, respectively. The trend change point date occurred in the year 2000 from the distribution-free CUSUM test with the trend maintaining a significant and steady increase from 2010 to 2015. Thus, this study established the existence of a trend, which is an indication of a changing climate, and satisfied the condition for rainfall Non-stationary intensity-duration-frequency (NS-IDF) modeling required for infrastructural design for combating flooding events.
文摘This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the intensity levels, the open-access R-studio software was used based on the General Extreme Value (GEV) distribution function. Among the four linear parameter models adopted for integrating time as a covariate, the fourth linear model incorporating scale and location with the shape function constant produced the least corrected Akaike Information Criteria (AICc), varying between 306.191 to 101.497 for 15 and 1440 minutes, respectively, selected for calibration of the GEV distribution equation. The non-stationary intensities yielded higher values above those of stationary models, proving that the assumption of stationary IDF models underestimated extreme events. The difference of 13.71 mm/hr (22.71%) to 14.26 mm/hr (17.0%) intensities implies an underestimation of the peak flood from a stationary IDF curve. The statistical difference at a 95% confidence level between stationary and non-stationary models was significant, confirming evidence of climatic change influenced by time-variant parameters. Consequently, emphasis should be on applying shorter-duration storms for design purposes occurring with higher intensities to help reduce the flood risk and resultant infrastructural failures.