Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major...Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major source of nutrient return.To model the litterfall production using climatic variables and assess the nutrient return in 14-year-old Eucalyptus grandis and Pinus taeda stands,we measured litter production over 2 years,using conical litter traps,and monitored climatic variables.Mean temperature,accumulated precipitation,and mean maximum vapor pres-sure deficit at the seasonal level influenced litterfall produc-tion by E.grandis;seasonal accumulated precipitation and mean maximum temperature affected litterfall by P.taeda.The regression tree modeling based on these climatic vari-ables had great accuracy and predictive power for E.grandis(N=33;MAE(mean absolute error)=0.65;RMSE(root mean square error)=0.91;R^(2)=0.71)and P.taeda(N=108;MAE=1.50;RMSE=1.59;R^(2)=0.72).The nutrient return followed a similar pattern to litterfall deposition,as well as the order of importance of macronutrients(E.grandis:Ca>N>K>Mg>P;P.taeda:N>Ca>K>Mg>P)and micronutrients(E.grandis and P.taeda:Mn>Fe>Zn>Cu)in both species.This study constitutes a first approximation of factors that affect litterfall and nutrient return in these systems.展开更多
Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The ...Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).展开更多
In this study, the dynamics of monthly variation in litterfall and the amount of nutrients, i.e., organic C, N, P and K, in an Aleurites montana plantation were analyzed, based on a field study and experiments over on...In this study, the dynamics of monthly variation in litterfall and the amount of nutrients, i.e., organic C, N, P and K, in an Aleurites montana plantation were analyzed, based on a field study and experiments over one year. The results show that the litterfall mass of A. montana collected generally presents an ascending trend with maximum defoliation occurring in the autumn and winter (October-December), accounting for 75.67% of the total amount of annual litterfalk The sequence in the amount of nutrients in A. montana litter was as follows: organic C 〉 N 〉 K 〉 P; their monthly amounts show various dynamic curves. Similar to the dynamics of the mass of monthly litterfall, the monthly returns of C, N, P and K generally show an ascending trend with their peak values all occurring in December. The mass of A. montana litterfall and the dynamics of its monthly nutrient return provide, to a certain degree, a scientific reference for planting and fertilizing A. montana.展开更多
The amounts of litter produced and nutrients returned play a fundamental role in the productivity and biogeochemical and nutrient cycling of forest ecosystems.We monitored annual litterfall production, nutrient return...The amounts of litter produced and nutrients returned play a fundamental role in the productivity and biogeochemical and nutrient cycling of forest ecosystems.We monitored annual litterfall production, nutrient return,and monthly dynamics over a one-year period in Chinese fir plantations aged 10, 22, and 34 years. Our objective was to quantify litterfall and nutrient return over a complete harvest rotation of Chinese fir. Annual litterfall production increased with stand age and was recorded as(3,294.6 ± 360.4),(3,733.9 ± 211.2), and(4,876.1 ± 212.8) kg ha-1a-1in stands aged 10, 22 and 34 years, respectively. Total litter production was significantly greater in the stand aged34 years than in the stand aged 10 years(p / 0.05). With the exception of miscellaneous components, needle litterfall constituted the highest proportion(27.5–43.6 %), followed by branches/twigs(9.5–16.6 %). In all three plantations,annual total nutrient return to soil was in the order of C(1,119.95–2,709.05 kg ha-1a-1) [ N(39.32–62.04 kg ha-1a-1) [ K(15.95–22.44 kg ha-1a-1) [ P(1.30–1.63 kg ha-1a-1). C, N, K and P input to soil was significantly lower in the 10-year-old stand in comparison to the 22- and34-year-old stands(p / 0.05). Litterfall production and nutrient return(C, N and K) followed similar patterns, and C and N input to soil was significantly related to litterfall production(needle, branch and total litterfall). C, N, P and K input to soil and total litterfall production were mainly driven by needle litterfall.展开更多
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf li...We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha-1 a-1 for S. robusta to 11.03 ± 3.72 t ha-1 a-1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a-1) compared to S. robusta (2.41 ±0.30 a-1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P 〈 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P 〉 N 〉 K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N〉K^P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K 〉 P 〉 N) during decomposition of their leaf litter.Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.展开更多
The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous...The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous area of northeastern Greece in 2010–2015.The foliar litterfall for both species reached about 70%of the total litterfall,and was significantly higher from the other two fractions(woody and rest litterfall).The fluxes of masses and nutrients were compared between ecosystems for each fraction separately.Only one significant statistical difference was found,that of K in the woody litterfall.In addition,the stocks of masses and nutrients were calculated in the forest floors and mineral soils of the two ecosystems.Likewise,the stocks of nutrients in the forest floors and mineral soils were compared between ecosystems.In the L horizon of the forest floors,statistical differences,as a result of species effect,were found for the stocks of Ca and N.In the FH horizons,the masses and all the nutrient stocks differed significantly,as the beech plot had much higher quantities of organic matter and nutrients.These higher quantities were probably due to low soil temperatures(microclimate)and high acidity in the beech plot(species effect)that slowed down decomposition.In the mineral soils,the propagation of random error derived from random errors of the individual soil layers was an important factor in the statistical comparisons.Because of the soil acidity in the beech plot,the stocks of exchangeable base cations were significantly higher in the oak plot,whereas the other nutrient stocks did not differ.展开更多
Macronutrients (N, P, K, Ca, Mg, and S) in litter of three primarily spruce (Picea purpurea Masters) (SF), fir (Abies faxoniana Rehder & E. H. Wilson) (FF), and birch (Betula platyphylla Sukaczev) (BF) ...Macronutrients (N, P, K, Ca, Mg, and S) in litter of three primarily spruce (Picea purpurea Masters) (SF), fir (Abies faxoniana Rehder & E. H. Wilson) (FF), and birch (Betula platyphylla Sukaczev) (BF) subalpine forests in western China were measured to understand the monthly variations in litter nutrient concentrations and annual and monthly nutrient returns via litteffall. Nutrient concentration in litter showed the rank order of Ca 〉 N 〉 Mg 〉 K 〉 S 〉 P. Monthly variations in nutrient concentrations were greater in leaf litter (LL) than other litter components. The highest and lowest concentrations of N, P, K, and S in LL were found in the growing season and the nongrowing season, respectively, but Ca and Mg were the opposite. Nutrient returns via litterfall showed a marked monthly pattern with a major peak in October and one or two small peaks in February and/or May, varying with the element and stand type, but no marked monthly variations in nutrient returns via woody litter, reproductive litter, except in May for the BF, and moss litter. Not only litter production but also nutrient concentration controlled the annual nutrient return and the monthly nutrient return pattern. The monthly patterns of the nutrient concentration and return were of ecological importance for nutrient cycling and plant growth in the subalpine forest ecosystems.展开更多
The environmental problems in the Bohai Sea have become more serious in the last decade. High nutrient concentration contributes much to it. A Sino-German cooperation program has been carried out to improve the unders...The environmental problems in the Bohai Sea have become more serious in the last decade. High nutrient concentration contributes much to it. A Sino-German cooperation program has been carried out to improve the understanding of the ecosystem by observations and modelling. A three-dimensional ecosystem model, coupled with a physical transport model, is adopted in this study. The simulation for the year 1982 is validated by the data collected in 1982/1983. The simulated annual mean nutrient concentrations are in good agreement with observations. The nutrient concentrations in the Bohai Sea, which are crucial to the algal growth, are high in winter and low in summer. There are depletion from spring to summer and elevation from autumn to winter for nutrients. The nutrients’ depletion is a response to the consumption of the phytoplankton bloom in spring. Internal recycle and external compensation affect the nutrient cycle. Their contributions to the nutrient budgets are discussed based on the simulated results. Production and respiration are the most important sink and source of nutrients. The process of photosynthesis consumes 152 kilotons-P and 831.1 kilotons-N while respiration releases 94.5 kilotons-P and 516.6 kilotons-N in the same period. The remineralization of the detritus pool is an important source of nutrient regene- ration. It can compensate 23 percent of the nutrient consumed by the production process. The inputs of phosphates and nitrogen from rivers are 0.55 and 52.7 kilotons respectively. The net nutrient budget is -3.05 kilotons-P and 31.6 kilotons-N.展开更多
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three diff...Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.展开更多
Winter cover crops have been shown to reduce nitrate-N (NO3-N) losses in runoff water and are recommended by the Illinois Nutrient Loss Reduction Strategy (NLRS) for reducing nutrient losses from agricultural fields. ...Winter cover crops have been shown to reduce nitrate-N (NO3-N) losses in runoff water and are recommended by the Illinois Nutrient Loss Reduction Strategy (NLRS) for reducing nutrient losses from agricultural fields. With an estimated 80 percent of the NO3-N load in Illinois coming from agriculture, the NLRS stresses the importance of farmers’ voluntary implementation of best management strategies in order to reach these goals. This study compares the difference in NO3-N losses from tile drainage water from an annual ryegrass (AR, Lolium multiflorum) winter cover-cropped treatment to a conventional tillage (CT) control (fall chisel and spring field cultivation). Throughout the maize (Zea mays L.) growing season, tile drainage water was collected and analyzed for NO3-N concentrations. Despite the AR treatment having a 29% lower mean daily NO3-N concentration, there was no significant difference in total daily NO3-N flux between AR and CT for this study period of April-July 2015. The cumulative losses of NO3-N were calculated at 11.65 and 10.56 kg ha?1 NO3-N for the CT and AR treatment, respectively, or a 9.4% reduction in the AR treatment during the period of study. When the season was divided based on growing season periods, the NO3-N flux values were less for the cover crop while the AR was actively growing, greater for the cover crop for the period following annual ryegrass termination through maximum crop canopy, and lower for the cover crop in the late stages of vegetative growth through relative maturity.展开更多
Aims Litterfall is a key parameter in forest biogeochemical cycle and fire risk prediction.However,considerable uncertainty remains regarding the litterfall variations with forest ages.Quantifying the interannual vari...Aims Litterfall is a key parameter in forest biogeochemical cycle and fire risk prediction.However,considerable uncertainty remains regarding the litterfall variations with forest ages.Quantifying the interannual variation of forest litterfall is crucial for reducing uncertainties in large-scale litterfall prediction.Methods Based on the available dataset(N=318)with continuous multi-year(≥2 years)measurements of litterfall in Chinese planted and secondary forests,coefficient of variation(CV),variation percent(V_(P)),and the ratio of next-year litterfall to current-year litterfall were used as the indexes to quantify the interannual variability in litterfall.Important Findings The interannual variations of litterfall showed a declining trend with increasing age from 1 to 90 years.The litterfall variations were the largest in 1-10 years(mean CV=23.51%and mean V_(P)=−28.59%to 20.89%),which were mainly from tree growth(mean ratio of next-year to current-year=1.20).In 11-40 years,the interannual variations of litterfall gradually decreased but still varied widely,mean CV was~18%and mean V_(P) ranged from−17.69%to 21.19%.In 41-90 years,the interannual variations minimized to 8.98%in mean CV and~8%in mean V_(P).As a result,forest litterfall remained relatively low and constant when stand age was larger than 40 years.This result was different from the previous assumptions that forest litterfall reached relatively stable when stand age was larger than 30,20 or even 15 years.Our findings can improve the knowledge about forest litter ecology and provide the groundwork for carbon budget and biogeochemical cycle models at a large scale.展开更多
凋落物养分输入量是营养元素通过凋落物归还土壤的库流量,也是土壤肥力的主要来源,旨在探究凋落物及其养分元素输入量对N沉降增加的早期响应,以期为竹林生态系统的物质循环和能量流动提供基础数据。2007年11月至2010年12月对华西雨屏区...凋落物养分输入量是营养元素通过凋落物归还土壤的库流量,也是土壤肥力的主要来源,旨在探究凋落物及其养分元素输入量对N沉降增加的早期响应,以期为竹林生态系统的物质循环和能量流动提供基础数据。2007年11月至2010年12月对华西雨屏区苦竹人工林进行了模拟氮(N)沉降试验,氮沉降水平分别为:对照(0 g N·m-2·a-1),低氮(5 g N·m-2·a-1),中氮(15 g N·m-2·a-1),高氮(30 g N·m-2·a-1)。在氮沉降2 a后,于2010年1月开始收集各样方的凋落物样品,连续收集12个月,测定凋落物量和养分输入量。结果表明:氮沉降显著增加了凋落物量;同时显著增加了凋落叶中的N、P、K、Ca、Mg元素含量和这几种养分元素的年输入量。研究表明模拟氮沉降处理增加了凋落物对土壤养分的输入量,这对于维持苦竹林地肥力与保持苦竹林分的长期生长力具有重要的作用。展开更多
基金funded by Lumin S.A. and the Agencia Nacional de Investigación e Innovación (ANII)[POS_NAC_2016_1_130479]
文摘Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major source of nutrient return.To model the litterfall production using climatic variables and assess the nutrient return in 14-year-old Eucalyptus grandis and Pinus taeda stands,we measured litter production over 2 years,using conical litter traps,and monitored climatic variables.Mean temperature,accumulated precipitation,and mean maximum vapor pres-sure deficit at the seasonal level influenced litterfall produc-tion by E.grandis;seasonal accumulated precipitation and mean maximum temperature affected litterfall by P.taeda.The regression tree modeling based on these climatic vari-ables had great accuracy and predictive power for E.grandis(N=33;MAE(mean absolute error)=0.65;RMSE(root mean square error)=0.91;R^(2)=0.71)and P.taeda(N=108;MAE=1.50;RMSE=1.59;R^(2)=0.72).The nutrient return followed a similar pattern to litterfall deposition,as well as the order of importance of macronutrients(E.grandis:Ca>N>K>Mg>P;P.taeda:N>Ca>K>Mg>P)and micronutrients(E.grandis and P.taeda:Mn>Fe>Zn>Cu)in both species.This study constitutes a first approximation of factors that affect litterfall and nutrient return in these systems.
基金The project was supported by Japanese Society for Promotion of Sciences (15P03118).
文摘Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).
基金sponsored in part by the Fujian Scitech Bureau for research in the universities of Fujian Province(No.2008F5014)The Fujian Forest Ecological System Process and Management Key Laboratory and the Forest Ecology Research Center of the Fujian Agriculture and Forestry University(FAFU) provided major funding
文摘In this study, the dynamics of monthly variation in litterfall and the amount of nutrients, i.e., organic C, N, P and K, in an Aleurites montana plantation were analyzed, based on a field study and experiments over one year. The results show that the litterfall mass of A. montana collected generally presents an ascending trend with maximum defoliation occurring in the autumn and winter (October-December), accounting for 75.67% of the total amount of annual litterfalk The sequence in the amount of nutrients in A. montana litter was as follows: organic C 〉 N 〉 K 〉 P; their monthly amounts show various dynamic curves. Similar to the dynamics of the mass of monthly litterfall, the monthly returns of C, N, P and K generally show an ascending trend with their peak values all occurring in December. The mass of A. montana litterfall and the dynamics of its monthly nutrient return provide, to a certain degree, a scientific reference for planting and fertilizing A. montana.
基金supported by National Natural Science Foundation of China(Grant Nos.31370619 and 31100472)Doctoral Program of Higher Education of Ministry of Education of China(Grant No.20113515110009)+2 种基金Forestry Public Benefit Research Projects of National Forestry Administration(Grant No.201304303)Science and Technology Major Project of the Fujian Province(Grant No.2012NZ0001–1)Training Program Foundation for University Distinguished Young Talents of Fujian Province,P.R.China(Grant No.JA 12091)
文摘The amounts of litter produced and nutrients returned play a fundamental role in the productivity and biogeochemical and nutrient cycling of forest ecosystems.We monitored annual litterfall production, nutrient return,and monthly dynamics over a one-year period in Chinese fir plantations aged 10, 22, and 34 years. Our objective was to quantify litterfall and nutrient return over a complete harvest rotation of Chinese fir. Annual litterfall production increased with stand age and was recorded as(3,294.6 ± 360.4),(3,733.9 ± 211.2), and(4,876.1 ± 212.8) kg ha-1a-1in stands aged 10, 22 and 34 years, respectively. Total litter production was significantly greater in the stand aged34 years than in the stand aged 10 years(p / 0.05). With the exception of miscellaneous components, needle litterfall constituted the highest proportion(27.5–43.6 %), followed by branches/twigs(9.5–16.6 %). In all three plantations,annual total nutrient return to soil was in the order of C(1,119.95–2,709.05 kg ha-1a-1) [ N(39.32–62.04 kg ha-1a-1) [ K(15.95–22.44 kg ha-1a-1) [ P(1.30–1.63 kg ha-1a-1). C, N, K and P input to soil was significantly lower in the 10-year-old stand in comparison to the 22- and34-year-old stands(p / 0.05). Litterfall production and nutrient return(C, N and K) followed similar patterns, and C and N input to soil was significantly related to litterfall production(needle, branch and total litterfall). C, N, P and K input to soil and total litterfall production were mainly driven by needle litterfall.
基金supported by The University of Burdwan in the form of Ph.D.work(2011-12/2)
文摘We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha-1 a-1 for S. robusta to 11.03 ± 3.72 t ha-1 a-1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a-1) compared to S. robusta (2.41 ±0.30 a-1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P 〈 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P 〉 N 〉 K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N〉K^P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K 〉 P 〉 N) during decomposition of their leaf litter.Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.
基金financially supported by the Programme of "Effects of Atmospheric Pollutants on Forest Ecosystems" from the Ministry of Agriculture and Foodthe Greek Ministry of Environmentthe European Commission
文摘The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous area of northeastern Greece in 2010–2015.The foliar litterfall for both species reached about 70%of the total litterfall,and was significantly higher from the other two fractions(woody and rest litterfall).The fluxes of masses and nutrients were compared between ecosystems for each fraction separately.Only one significant statistical difference was found,that of K in the woody litterfall.In addition,the stocks of masses and nutrients were calculated in the forest floors and mineral soils of the two ecosystems.Likewise,the stocks of nutrients in the forest floors and mineral soils were compared between ecosystems.In the L horizon of the forest floors,statistical differences,as a result of species effect,were found for the stocks of Ca and N.In the FH horizons,the masses and all the nutrient stocks differed significantly,as the beech plot had much higher quantities of organic matter and nutrients.These higher quantities were probably due to low soil temperatures(microclimate)and high acidity in the beech plot(species effect)that slowed down decomposition.In the mineral soils,the propagation of random error derived from random errors of the individual soil layers was an important factor in the statistical comparisons.Because of the soil acidity in the beech plot,the stocks of exchangeable base cations were significantly higher in the oak plot,whereas the other nutrient stocks did not differ.
基金Project supported by the National Natural Science Foundation of China (Nos. 30471378, 90202010 and 30211130504)the Applied and Basic Research Program of Sichuan Province, and the Talent-Recruiting Program of Sichuan Agricultural University
文摘Macronutrients (N, P, K, Ca, Mg, and S) in litter of three primarily spruce (Picea purpurea Masters) (SF), fir (Abies faxoniana Rehder & E. H. Wilson) (FF), and birch (Betula platyphylla Sukaczev) (BF) subalpine forests in western China were measured to understand the monthly variations in litter nutrient concentrations and annual and monthly nutrient returns via litteffall. Nutrient concentration in litter showed the rank order of Ca 〉 N 〉 Mg 〉 K 〉 S 〉 P. Monthly variations in nutrient concentrations were greater in leaf litter (LL) than other litter components. The highest and lowest concentrations of N, P, K, and S in LL were found in the growing season and the nongrowing season, respectively, but Ca and Mg were the opposite. Nutrient returns via litterfall showed a marked monthly pattern with a major peak in October and one or two small peaks in February and/or May, varying with the element and stand type, but no marked monthly variations in nutrient returns via woody litter, reproductive litter, except in May for the BF, and moss litter. Not only litter production but also nutrient concentration controlled the annual nutrient return and the monthly nutrient return pattern. The monthly patterns of the nutrient concentration and return were of ecological importance for nutrient cycling and plant growth in the subalpine forest ecosystems.
基金supported by the National Natural Science Foundation of China with Grant(No.G497901001)the Major State Basic Research Program with Grant(No.G1999043703)
文摘The environmental problems in the Bohai Sea have become more serious in the last decade. High nutrient concentration contributes much to it. A Sino-German cooperation program has been carried out to improve the understanding of the ecosystem by observations and modelling. A three-dimensional ecosystem model, coupled with a physical transport model, is adopted in this study. The simulation for the year 1982 is validated by the data collected in 1982/1983. The simulated annual mean nutrient concentrations are in good agreement with observations. The nutrient concentrations in the Bohai Sea, which are crucial to the algal growth, are high in winter and low in summer. There are depletion from spring to summer and elevation from autumn to winter for nutrients. The nutrients’ depletion is a response to the consumption of the phytoplankton bloom in spring. Internal recycle and external compensation affect the nutrient cycle. Their contributions to the nutrient budgets are discussed based on the simulated results. Production and respiration are the most important sink and source of nutrients. The process of photosynthesis consumes 152 kilotons-P and 831.1 kilotons-N while respiration releases 94.5 kilotons-P and 516.6 kilotons-N in the same period. The remineralization of the detritus pool is an important source of nutrient regene- ration. It can compensate 23 percent of the nutrient consumed by the production process. The inputs of phosphates and nitrogen from rivers are 0.55 and 52.7 kilotons respectively. The net nutrient budget is -3.05 kilotons-P and 31.6 kilotons-N.
基金Project supported by the National Natural Science Foundation of China (No. 30530630)the Major State Basic Research and Development Program of China (No. G2000046802-05)the National Key Technologies Research and Development Program of China during the Tenth Five-Year Period (No. 2001BA606A-05)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX1-02)
文摘Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.
文摘Winter cover crops have been shown to reduce nitrate-N (NO3-N) losses in runoff water and are recommended by the Illinois Nutrient Loss Reduction Strategy (NLRS) for reducing nutrient losses from agricultural fields. With an estimated 80 percent of the NO3-N load in Illinois coming from agriculture, the NLRS stresses the importance of farmers’ voluntary implementation of best management strategies in order to reach these goals. This study compares the difference in NO3-N losses from tile drainage water from an annual ryegrass (AR, Lolium multiflorum) winter cover-cropped treatment to a conventional tillage (CT) control (fall chisel and spring field cultivation). Throughout the maize (Zea mays L.) growing season, tile drainage water was collected and analyzed for NO3-N concentrations. Despite the AR treatment having a 29% lower mean daily NO3-N concentration, there was no significant difference in total daily NO3-N flux between AR and CT for this study period of April-July 2015. The cumulative losses of NO3-N were calculated at 11.65 and 10.56 kg ha?1 NO3-N for the CT and AR treatment, respectively, or a 9.4% reduction in the AR treatment during the period of study. When the season was divided based on growing season periods, the NO3-N flux values were less for the cover crop while the AR was actively growing, greater for the cover crop for the period following annual ryegrass termination through maximum crop canopy, and lower for the cover crop in the late stages of vegetative growth through relative maturity.
基金supported by the National Key Research and Development Program of China(2017YFC0503906)the China Special Fund for Meteorological Research in the Public Interest(GYHY201406034).
文摘Aims Litterfall is a key parameter in forest biogeochemical cycle and fire risk prediction.However,considerable uncertainty remains regarding the litterfall variations with forest ages.Quantifying the interannual variation of forest litterfall is crucial for reducing uncertainties in large-scale litterfall prediction.Methods Based on the available dataset(N=318)with continuous multi-year(≥2 years)measurements of litterfall in Chinese planted and secondary forests,coefficient of variation(CV),variation percent(V_(P)),and the ratio of next-year litterfall to current-year litterfall were used as the indexes to quantify the interannual variability in litterfall.Important Findings The interannual variations of litterfall showed a declining trend with increasing age from 1 to 90 years.The litterfall variations were the largest in 1-10 years(mean CV=23.51%and mean V_(P)=−28.59%to 20.89%),which were mainly from tree growth(mean ratio of next-year to current-year=1.20).In 11-40 years,the interannual variations of litterfall gradually decreased but still varied widely,mean CV was~18%and mean V_(P) ranged from−17.69%to 21.19%.In 41-90 years,the interannual variations minimized to 8.98%in mean CV and~8%in mean V_(P).As a result,forest litterfall remained relatively low and constant when stand age was larger than 40 years.This result was different from the previous assumptions that forest litterfall reached relatively stable when stand age was larger than 30,20 or even 15 years.Our findings can improve the knowledge about forest litter ecology and provide the groundwork for carbon budget and biogeochemical cycle models at a large scale.
文摘凋落物养分输入量是营养元素通过凋落物归还土壤的库流量,也是土壤肥力的主要来源,旨在探究凋落物及其养分元素输入量对N沉降增加的早期响应,以期为竹林生态系统的物质循环和能量流动提供基础数据。2007年11月至2010年12月对华西雨屏区苦竹人工林进行了模拟氮(N)沉降试验,氮沉降水平分别为:对照(0 g N·m-2·a-1),低氮(5 g N·m-2·a-1),中氮(15 g N·m-2·a-1),高氮(30 g N·m-2·a-1)。在氮沉降2 a后,于2010年1月开始收集各样方的凋落物样品,连续收集12个月,测定凋落物量和养分输入量。结果表明:氮沉降显著增加了凋落物量;同时显著增加了凋落叶中的N、P、K、Ca、Mg元素含量和这几种养分元素的年输入量。研究表明模拟氮沉降处理增加了凋落物对土壤养分的输入量,这对于维持苦竹林地肥力与保持苦竹林分的长期生长力具有重要的作用。