This paper presents a radiation hardened flip-flop with an annular gate and a Muller C-element. The proposed cell has multiple working modes which can be used in different situations. Each part of the cell can be veri...This paper presents a radiation hardened flip-flop with an annular gate and a Muller C-element. The proposed cell has multiple working modes which can be used in different situations. Each part of the cell can be verified easily and completely by using different modes. This cell has been designed under an SMIC 0.13 μm process and 3-D simulated by using Synopsys TCAD. Heavy-ion testing has been done on the cell and its counterparts. The test results demonstrate that the presented cell reduces the cell's saturation cross section by approximately two orders of magnitude with little penalty on performance.展开更多
提出了一种适用于环形栅LDMOS器件的子电路宏模型。基于对环形栅LDMOS器件结构的分析,将环形栅LDMOS器件分为两个部分,一个是中间的条形栅MOS部分,使用常规的高压MOS模型;另一个是端头部分,为一个圆环形栅极MOS器件,采用了一个单独的模...提出了一种适用于环形栅LDMOS器件的子电路宏模型。基于对环形栅LDMOS器件结构的分析,将环形栅LDMOS器件分为两个部分,一个是中间的条形栅MOS部分,使用常规的高压MOS模型;另一个是端头部分,为一个圆环形栅极MOS器件,采用了一个单独的模型。基于40 V BCD工艺的N沟道LDMOS器件进行模型提取与验证。结果表明,建立的宏模型具有较强的几何尺寸缩放功能,对于不同尺寸的器件都具有较高的拟合精度,并且模型能够兼容当前主要的商用电路仿真器Hspice和Spectre。展开更多
Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrie...Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrier effect (HCE) has also been proven to be very weak. In this paper, the reason why the annular gate nMOSFETs have good TID but bad HCE resistance is discussed in detail, and an improved design to locate the source contacts only along one side of the annular gate is used to weaken the HCE degradation. The good TID and HCE hardened capability of the design are verified by the experiments for I/O and core nMOSFETs in a 0.18 μm bulk CMOS technology. In addition, the shortcoming of this design is also discussed and the TID and the HCE characteristics of the replacers (the annular source nMOSFETs) are also studied to provide a possible alternative for the designers.展开更多
In order to quantitatively compare the design cost and performance of various gate styles,NMOS transistors with two-edged,annular and ring gate layouts were designed and fabricated by a commercial 0.35μm CMOS process...In order to quantitatively compare the design cost and performance of various gate styles,NMOS transistors with two-edged,annular and ring gate layouts were designed and fabricated by a commercial 0.35μm CMOS process.By comparing the minimum W/L ratios and transistor areas,it was found that either the annular layout or its ring counterpart incurs a higher area penalty that depends on the W/L ratio of the transistor to be designed. Furthermore,by comparing the output and transfer characteristics of the transistors and analyzing the popular existing methods for extracting the effective W/L ratio,it was shown that the mid-line approximation for annular NMOS could incur an error of more than 10%.It was also demonstrated that the foundry-provided extraction tool needs significant adaptation when being applied to the enclosed-gate transistors,since it is targeted only toward the two-edged transistor.A simple approach for rough extraction of the W/L ratio for the ring-gate NMOS was presented and its effectiveness was confirmed by the experimental results with an error up to 8%.展开更多
文摘This paper presents a radiation hardened flip-flop with an annular gate and a Muller C-element. The proposed cell has multiple working modes which can be used in different situations. Each part of the cell can be verified easily and completely by using different modes. This cell has been designed under an SMIC 0.13 μm process and 3-D simulated by using Synopsys TCAD. Heavy-ion testing has been done on the cell and its counterparts. The test results demonstrate that the presented cell reduces the cell's saturation cross section by approximately two orders of magnitude with little penalty on performance.
文摘提出了一种适用于环形栅LDMOS器件的子电路宏模型。基于对环形栅LDMOS器件结构的分析,将环形栅LDMOS器件分为两个部分,一个是中间的条形栅MOS部分,使用常规的高压MOS模型;另一个是端头部分,为一个圆环形栅极MOS器件,采用了一个单独的模型。基于40 V BCD工艺的N沟道LDMOS器件进行模型提取与验证。结果表明,建立的宏模型具有较强的几何尺寸缩放功能,对于不同尺寸的器件都具有较高的拟合精度,并且模型能够兼容当前主要的商用电路仿真器Hspice和Spectre。
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.60836004)the National Natural Science Foundation of China(Grant Nos.61006070 and 61076025)
文摘Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrier effect (HCE) has also been proven to be very weak. In this paper, the reason why the annular gate nMOSFETs have good TID but bad HCE resistance is discussed in detail, and an improved design to locate the source contacts only along one side of the annular gate is used to weaken the HCE degradation. The good TID and HCE hardened capability of the design are verified by the experiments for I/O and core nMOSFETs in a 0.18 μm bulk CMOS technology. In addition, the shortcoming of this design is also discussed and the TID and the HCE characteristics of the replacers (the annular source nMOSFETs) are also studied to provide a possible alternative for the designers.
文摘In order to quantitatively compare the design cost and performance of various gate styles,NMOS transistors with two-edged,annular and ring gate layouts were designed and fabricated by a commercial 0.35μm CMOS process.By comparing the minimum W/L ratios and transistor areas,it was found that either the annular layout or its ring counterpart incurs a higher area penalty that depends on the W/L ratio of the transistor to be designed. Furthermore,by comparing the output and transfer characteristics of the transistors and analyzing the popular existing methods for extracting the effective W/L ratio,it was shown that the mid-line approximation for annular NMOS could incur an error of more than 10%.It was also demonstrated that the foundry-provided extraction tool needs significant adaptation when being applied to the enclosed-gate transistors,since it is targeted only toward the two-edged transistor.A simple approach for rough extraction of the W/L ratio for the ring-gate NMOS was presented and its effectiveness was confirmed by the experimental results with an error up to 8%.