Annulus fibrosus (AF) tissue engineering has recently received increasing attention as a treatment for intervertebral disc 0VD) degeneration; however, such engineering remains challenging because of the remarkable ...Annulus fibrosus (AF) tissue engineering has recently received increasing attention as a treatment for intervertebral disc 0VD) degeneration; however, such engineering remains challenging because of the remarkable complexity of AF tissue. In order to engineer a functional AF replacement, the fabrication of cell-scaffold constructs that mimic the cellular, biochemical and structural features of native AF tissue is critical. In this study, we fabricated aligned fibroua polyurethane scaffolds using an electrospinning technique and used them for culturing AF-derived-stem/progenitor cells (AFSCs). Random fibrous scaffolds, also prepared via electrospinningy were used as a control. We compared the morphology, proliferation, gene expression and matrix production of AFSCs on aligned scaffolds and random scaffolds. There was no apparent difference in the attachment or proliferation of cells cultured on aligned scaffolds and random scaffolds. However, compared to cells on random scaffolds, the AFSCs on aligned scaffolds were more elongated and better aligned, and they exhibited higher gene expression and matrix production of coUagen-I and aggrecan. The gene expression and protein production of coUagen-II did not appear to differ between the two groups. Together, these findings indicate that aligned fibrous scaffolds may provide a favourable microenvironment for the differentiation of AFSCs into cells similar to outer AF cells, which predominantly produce collagen-I matrix.展开更多
Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration(IVDD).The key pathological change during IVDD is dysfunction of the an...Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration(IVDD).The key pathological change during IVDD is dysfunction of the annulus fibrosus(AF).However,due to the lack of an in-depth understanding of AF biology,the methods to reconstruct the AF are very limited.In this study,the mice AF cell atlas were decoded by single-cell RNA sequencing to provide a guide for AF reconstruction.The results first identify a new population of AF cells,fibrochondrocyte-like AF cells,which synthesize both collagen Ⅰ and collagen Ⅱ and are potential functional cells for AF reconstruction.According to the dual features of the AF extracellular matrix,a composite hydrogel based on the acylation of methacrylated silk fibroin with methacrylated hyaluronic acid was produced.To obtain the ability to stimulate differentiation,the composite hydrogels were combined with a fibrochondrocyte-inducing supplement.Finally,reconstruction of the AF defects,by the novel AF stem cell-loaded composite hydrogel,could be observed,its amount of chondroid matrices recovered to 31.7% of AF aera which is significantly higher than that in other control groups.In summary,this study decodes the AF cell atlas,based on which a novel strategy for AF reconstruction is proposed.展开更多
基金supported by the National Natural Science Foundation of China (81171479, 51303120, 81471790)the China Postdoctoral Science Foundation (2012M521121)+2 种基金the Natural Science Foundation of Jiangsu Province (BK20130335)the Jiangsu Provincial Special Program of Medical Science (BL2012004)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Annulus fibrosus (AF) tissue engineering has recently received increasing attention as a treatment for intervertebral disc 0VD) degeneration; however, such engineering remains challenging because of the remarkable complexity of AF tissue. In order to engineer a functional AF replacement, the fabrication of cell-scaffold constructs that mimic the cellular, biochemical and structural features of native AF tissue is critical. In this study, we fabricated aligned fibroua polyurethane scaffolds using an electrospinning technique and used them for culturing AF-derived-stem/progenitor cells (AFSCs). Random fibrous scaffolds, also prepared via electrospinningy were used as a control. We compared the morphology, proliferation, gene expression and matrix production of AFSCs on aligned scaffolds and random scaffolds. There was no apparent difference in the attachment or proliferation of cells cultured on aligned scaffolds and random scaffolds. However, compared to cells on random scaffolds, the AFSCs on aligned scaffolds were more elongated and better aligned, and they exhibited higher gene expression and matrix production of coUagen-I and aggrecan. The gene expression and protein production of coUagen-II did not appear to differ between the two groups. Together, these findings indicate that aligned fibrous scaffolds may provide a favourable microenvironment for the differentiation of AFSCs into cells similar to outer AF cells, which predominantly produce collagen-I matrix.
基金the financial support of the following funds for our study:The State Key Program of National Natural Science Foundation of China(Grant nos.81730065 to Z.L.,82130070 to L.Y.)Projects of International Cooperation and Exchanges of National Natural Science Foundation of China(Grant nos.82020108019 to Z.L.).
文摘Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration(IVDD).The key pathological change during IVDD is dysfunction of the annulus fibrosus(AF).However,due to the lack of an in-depth understanding of AF biology,the methods to reconstruct the AF are very limited.In this study,the mice AF cell atlas were decoded by single-cell RNA sequencing to provide a guide for AF reconstruction.The results first identify a new population of AF cells,fibrochondrocyte-like AF cells,which synthesize both collagen Ⅰ and collagen Ⅱ and are potential functional cells for AF reconstruction.According to the dual features of the AF extracellular matrix,a composite hydrogel based on the acylation of methacrylated silk fibroin with methacrylated hyaluronic acid was produced.To obtain the ability to stimulate differentiation,the composite hydrogels were combined with a fibrochondrocyte-inducing supplement.Finally,reconstruction of the AF defects,by the novel AF stem cell-loaded composite hydrogel,could be observed,its amount of chondroid matrices recovered to 31.7% of AF aera which is significantly higher than that in other control groups.In summary,this study decodes the AF cell atlas,based on which a novel strategy for AF reconstruction is proposed.