期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Key CO_(2)capture technology of pure oxygen exhaust gas combustion for syngas-fueled high-temperature fuel cells 被引量:4
1
作者 Hanlin Wang Qilong Lei +5 位作者 Pingping Li Changlei Liu Yunpeng Xue Xuewei Zhang Chufu Li Zhibin Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第3期383-393,共11页
Integrated gasification fuel cells(IGFCs)integrating high-temperature solid oxide fuel cell technology with CO_(2)capture processes represents highly-efficient power systems with negligible CO_(2)emissions.Flame burni... Integrated gasification fuel cells(IGFCs)integrating high-temperature solid oxide fuel cell technology with CO_(2)capture processes represents highly-efficient power systems with negligible CO_(2)emissions.Flame burning with pure oxygen is an ideal method for fuel cell exhaust gas treatment,and this report describes experimental and numerical studies regarding an oxy-combustor for treating the exhaust gas of a 10 kW IGFC system anode.The applied simulation method was verified based on experiments,and the key performance indices of the combustor were studied under various conditions.It was determined that 315 K was the ideal condensation temperature to obtain flame stability.Under these pure oxygen flame burning conditions,CO was almost completely converted,and the dry mole fraction of CO_(2)after burning was C 0.958 when there was up to 5%excess O_(2).Overall,5%excess O_(2)was recommended to maximize CO_(2)capture and promote other environmental considerations.Additionally,the optimal tangential fuel jet angle to control the liner temperature was approximately 25°.The total fuel utilization had to be high enough to maintain the oxygen flame temperature of the anode exhaust gas below 1800 K to ensure that the system was environmentally friendly.The results presented herein have great value for designing IGFCs coupled with CO_(2)capture systems. 展开更多
关键词 Integrated gasification fuel cell system Solid oxide fuel cell anode exhaust gas treatment CO_(2)capture OXY-COMBUSTION
下载PDF
Formation and Bioactivity of SrTiO_3 Nanotubes on Titanium by Modified Anodization and Hydrothermal Treatment
2
作者 Yanni Zhang Yong Han Lan Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期930-936,共7页
SrTiO3 nanotube films with good adhesion strengths to Ti substrates were fabricated by using a hybrid approach with a modified anodization and a hydrothermal treatment (HT). The effect of Sr^2+ concentration in HT ... SrTiO3 nanotube films with good adhesion strengths to Ti substrates were fabricated by using a hybrid approach with a modified anodization and a hydrothermal treatment (HT). The effect of Sr^2+ concentration in HT solutions on the morphologies and phase components of the nanotubes were investigated, the SrTiO3 nanotubes formation mechanism was explored, and the adhesion strengths, hydrophilicity and apatite-forming ability of the SrTiO3 nanotubes were also evaluated. The results demonstrated that with increasing the incorporation of Sr^2+ into the nanotubes, no obvious changes of the lengths and outer diameters of the nanotubes were observed, but the wall thickness and the crystallinity of SrTiO3 in the nanotubes increased. The accumulation of Sr at the inner tube wall indicated that the reaction of Sr^2+ with TiO2 mainly occurred in the vicinity of internal surfaces of the closely arranged nanotubes. The formation of the SrTiO3 nanotubes could be attributed to an in situ dissolution-recrystallization process. The SrTiO3 nanotubes exhibited good hydrophilicity and bioactivity, and the induced apatite preferred to nucleate on the nanotubes with higher crystallinity and Sr content, indicating a good hio-adaptability of the SrTiO3 nanotubes for orthopedic application. 展开更多
关键词 SrTiO3 nanotubes Modified anodization Hydrothermal treatment Bio-adaptability
原文传递
Bioactive Titanium Surfaces with the Effect of Inhibiting Biofilm Formation 被引量:4
3
作者 Chongxia Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第4期589-599,共11页
Titanium metals and its alloy have been widely used in hard tissue repairing fields due to their good biocampatibility and mechanical properties. However, bioinert response and biomaterial associated infections are th... Titanium metals and its alloy have been widely used in hard tissue repairing fields due to their good biocampatibility and mechanical properties. However, bioinert response and biomaterial associated infections are the main problems for their clinical application. In this study, we chose titanium plates treated with anodic oxidation (AO-Ti), alkali-heat (AH-Ti) and acid-alkali (AA-Ti) methods, which have been proved to be bioactive in vivo, to culture with Staphylococcus aureus and Escherichia coli to investigate the interaction between bioactive titanium surfaces and biofilm. We used X-ray diffraction (XRD), Scanning Electron Microscope (SEM), roughness measurement to study the physical-chemical properties of the as-received bioactive titanium surfaces, and Confocal Laser Scanning Microscope (CLSM) was employed to study the properties of biofilm formed on the biomaterial surfaces. The results indicate that the titanium surface subjected to anodic oxidation treatment is unfavorable for the formation ofbiofilm in vitro because the titania (TiO2) coating formed by anodizing has superior antimicrobial property than the other surfaces. Therefore, anodic oxidation surface modification is effective to endow titanium surface with bioactivity and antimicrobial property, which has the potential to improve the successful rate of the clinical application of titanium implants. 展开更多
关键词 TITANIUM bioactive anodic oxidation treatment ANTIBACTERIAL biofilm formation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部