MANET routing is critical and routing decision should be made sooner before the node leaves the network.Fast decisions always compensate network performance.In addition,most MANET routing protocols assume a friendly a...MANET routing is critical and routing decision should be made sooner before the node leaves the network.Fast decisions always compensate network performance.In addition,most MANET routing protocols assume a friendly and cooperative environment,and hence are vulnerable to various attacks.Trust and Reputation would serve as a major solution to these problems.Learning the network characteristics and choosing right routing decisions at right times would be a significant solution.In this work,we have done an extensive survey of fault tolerant protocols and ant colony algorithms applied to routing in MANETs.We propose a QoS constrained fault tolerant ant lookahead routing algorithm which attempts to identify valid route and look-ahead route pairs which might help in choosing the alternate path in case of valid route failure.The results prove that the proposed algorithm takes better routing decisions with 20-30 percent improvement compared with existing ant colony algorithms.展开更多
文摘MANET routing is critical and routing decision should be made sooner before the node leaves the network.Fast decisions always compensate network performance.In addition,most MANET routing protocols assume a friendly and cooperative environment,and hence are vulnerable to various attacks.Trust and Reputation would serve as a major solution to these problems.Learning the network characteristics and choosing right routing decisions at right times would be a significant solution.In this work,we have done an extensive survey of fault tolerant protocols and ant colony algorithms applied to routing in MANETs.We propose a QoS constrained fault tolerant ant lookahead routing algorithm which attempts to identify valid route and look-ahead route pairs which might help in choosing the alternate path in case of valid route failure.The results prove that the proposed algorithm takes better routing decisions with 20-30 percent improvement compared with existing ant colony algorithms.