Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node...Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).展开更多
存在监控冲突的天基中段预警传感器调度优化是一个动态、高维、复杂多约束的非线性优化问题,其解空间的高维度与状态复杂性直接制约了智能优化算法的运用。本文以任务分解与任务复合优先权计算为基础,通过二级分离机制将解空间维度与状...存在监控冲突的天基中段预警传感器调度优化是一个动态、高维、复杂多约束的非线性优化问题,其解空间的高维度与状态复杂性直接制约了智能优化算法的运用。本文以任务分解与任务复合优先权计算为基础,通过二级分离机制将解空间维度与状态复杂性降低至适于连续蚁群(continuous ant-colony optimization,CACO)处理的全局优化形态,构建出相应的优化子路径集.在此基础上,针对监控冲突导致的状态变化特性,从局部搜索递进与募集的角度提出适于传感器调度优化的MG-DCACO(double direction continuous ant-colony optimizationbased mass recruitment and group recruitment)算法,成功将智能优化算法应用于基于低轨星座的天基中段预警中.最后对算法的收敛性进行论证,并通过与已有规则调度算法的对比得出MG-DCACO算法可获得优于规则调度算法的全局最优解。展开更多
文摘Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).
文摘存在监控冲突的天基中段预警传感器调度优化是一个动态、高维、复杂多约束的非线性优化问题,其解空间的高维度与状态复杂性直接制约了智能优化算法的运用。本文以任务分解与任务复合优先权计算为基础,通过二级分离机制将解空间维度与状态复杂性降低至适于连续蚁群(continuous ant-colony optimization,CACO)处理的全局优化形态,构建出相应的优化子路径集.在此基础上,针对监控冲突导致的状态变化特性,从局部搜索递进与募集的角度提出适于传感器调度优化的MG-DCACO(double direction continuous ant-colony optimizationbased mass recruitment and group recruitment)算法,成功将智能优化算法应用于基于低轨星座的天基中段预警中.最后对算法的收敛性进行论证,并通过与已有规则调度算法的对比得出MG-DCACO算法可获得优于规则调度算法的全局最优解。