期刊文献+
共找到9,657篇文章
< 1 2 250 >
每页显示 20 50 100
An Improved Image Steganography Security and Capacity Using Ant Colony Algorithm Optimization
1
作者 Zinah Khalid Jasim Jasim Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第9期4643-4662,共20页
This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,shoul... This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness. 展开更多
关键词 STEGANOGRAPHY STEGANALYSIS capacity optimization ant colony algorithm
下载PDF
A Pre-Selection-Based Ant Colony System for Integrated Resources Scheduling Problem at Marine Container Terminal
2
作者 Rong Wang Xinxin Xu +2 位作者 Zijia Wang Fei Ji Nankun Mu 《Computers, Materials & Continua》 SCIE EI 2024年第8期2363-2385,共23页
Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation pe... Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation performance of MCT.To solve the practical resource scheduling problem(RSP)in MCT efficiently,this paper has contributions to both the problem model and the algorithm design.Firstly,in the problem model,different from most of the existing studies that only consider scheduling part of the resources in MCT,we propose a unified mathematical model for formulating an integrated RSP.The new integrated RSP model allocates and schedules multiple MCT resources simultaneously by taking the total cost minimization as the objective.Secondly,in the algorithm design,a pre-selection-based ant colony system(PACS)approach is proposed based on graphic structure solution representation and a pre-selection strategy.On the one hand,as the RSP can be formulated as the shortest path problem on the directed complete graph,the graphic structure is proposed to represent the solution encoding to consider multiple constraints and multiple factors of the RSP,which effectively avoids the generation of infeasible solutions.On the other hand,the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-quality solution.To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,a set of test cases with different sizes is conducted.Experimental results and comparisons show the effectiveness and efficiency of the PACS algorithm,which can significantly outperform other state-of-the-art algorithms. 展开更多
关键词 Resource scheduling problem(RSP) ant colony system(acs) marine container terminal(MCT) pre-selection strategy
下载PDF
Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence
3
作者 Ting Cai Chun Ye +5 位作者 Zhiwei Ye Ziyuan Chen Mengqing Mei Haichao Zhang Wanfang Bai Peng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1157-1175,共19页
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi... The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper. 展开更多
关键词 Multi-label feature selection ant colony optimization algorithm dynamic redundancy high-dimensional data label correlation
下载PDF
Cooperative-Guided Ant Colony Optimization with Knowledge Learning for Job Shop Scheduling Problem
4
作者 Wei Li Xiangfang Yan Ying Huang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1283-1299,共17页
With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds... With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerable theoretical research value.However,finding a satisfactory solution within a given time is difficult due to the NP-hard nature of the JSP.A co-operative-guided ant colony optimization algorithm with knowledge learning(namely KLCACO)is proposed to address this difficulty.This algorithm integrates a data-based swarm intelligence optimization algorithm with model-based JSP schedule knowledge.A solution construction scheme based on scheduling knowledge learning is proposed for KLCACO.The problem model and algorithm data are fused by merging scheduling and planning knowledge with individual scheme construction to enhance the quality of the generated individual solutions.A pheromone guidance mechanism,which is based on a collaborative machine strategy,is used to simplify information learning and the problem space by collaborating with different machine processing orders.Additionally,the KLCACO algorithm utilizes the classical neighborhood structure to optimize the solution,expanding the search space of the algorithm and accelerating its convergence.The KLCACO algorithm is compared with other highperformance intelligent optimization algorithms on four public benchmark datasets,comprising 48 benchmark test cases in total.The effectiveness of the proposed algorithm in addressing JSPs is validated,demonstrating the feasibility of the KLCACO algorithm for knowledge and data fusion in complex combinatorial optimization problems. 展开更多
关键词 ant colony Optimization(acO) Job shop Scheduling Problem(JSP) knowledge learning cooperative guidance
原文传递
Bio-Inspired Intelligent Routing in WSN: Integrating Mayfly Optimization and Enhanced Ant Colony Optimization for Energy-Efficient Cluster Formation and Maintenance
5
作者 V.G.Saranya S.Karthik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期127-150,共24页
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node... Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE). 展开更多
关键词 Enhanced ant colony optimization mayfly optimization algorithm wireless sensor networks cluster head base station(BS)
下载PDF
A Distributed Ant Colony Optimization Applied in Edge Detection
6
作者 Min Chen 《Journal of Computer and Communications》 2024年第8期161-173,共13页
With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, le... With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms. 展开更多
关键词 Distributed System ant colony Optimization Edge Detection MAPREDUCE SPEEDUP
下载PDF
An Effective Optimization Algorithm for Ant Colony Vehicular Congestion Management
7
作者 Tebepah Tariuge Timadi Matthew 《Journal of Computer and Communications》 2024年第9期119-130,共12页
Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion... Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being. 展开更多
关键词 ant colony Optimization ADAPTABILITY CONGESTION PHEROMONES
下载PDF
A Drone-Based Blood Donation Approach Using an Ant Colony Optimization Algorithm
8
作者 Sana Abbas Faraha Ashraf +2 位作者 Fahd Jarad Muhammad Shoaib Sardar Imran Siddique 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1917-1930,共14页
This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a p... This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem(often TSP).The wide use promises to accelerate and offers the opportunity to cultivate health care,particularly in remote or unmerited environments by shrinking lab testing reversal times,empowering just-in-time lifesaving medical supply. 展开更多
关键词 NETWORK ant colony algorithm PATH complete graph blood banks DRONES travelling salesman problem
下载PDF
Improved Ant Colony Optimization and Machine Learning Based Ensemble Intrusion Detection Model
9
作者 S.Vanitha P.Balasubramanie 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期849-864,共16页
Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification... Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain.Machine Learning Based Ensemble Intrusion Detection(MLEID)method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport(MQTT)and Hyper-Text Transfer Proto-col(HTTP)protocols.The proposed work has two significant contributions which are a selection of features and detection of attacks.New features are chosen from Improved Ant Colony Optimization(IACO)in the feature selection,and then the detection of attacks is carried out based on a combination of their possible proper-ties.The IACO approach is focused on defining the attacker’s important features against HTTP and MQTT.In the IACO algorithm,the constant factor is calculated against HTTP and MQTT based on the mean function for each element.Attack detection,the performance of several machine learning models are Distance Deci-sion Tree(DDT),Adaptive Neuro-Fuzzy Inference System(ANFIS)and Mahala-nobis Distance Support Vector Machine(MDSVM)were compared with predicting accurate attacks on the IoT network.The outcomes of these classifiers are combined into the ensemble model.The proposed MLEID strategy has effec-tively established malicious incidents.The UNSW-NB15 dataset is used to test the MLEID technique using data from simulated IoT sensors.Besides,the pro-posed MLEID technique has a greater detection rate and an inferior rate of false-positive compared to other conventional techniques. 展开更多
关键词 Network intrusion detection system(NIDS) internet of things(IOT) ensemble learning statisticalflow features BOTNET ensemble technique improved ant colony optimization(IacO) feature selection
下载PDF
Route Search Method for Railway Replacement Buses Adopting Ant Colony Optimization
10
作者 Kei Nagaoka Kayoko Yamamoto 《Journal of Geographic Information System》 2023年第4期391-420,共30页
In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the disco... In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed. 展开更多
关键词 Local Railway Line Railway Replacement Bus Route Search Method ant colony Optimization (acO) Dijkstra’s Algorithm Geographic Information Systems (GIS)
下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
11
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects ant colony optimization algorithm Support vector machine Feature extraction RECOGNITION
下载PDF
舰船管路布置PG-MACO优化方法
12
作者 林焰 金庭宇 杨宇超 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第7期1027-1035,共9页
针对舰船管路设计效率低下的问题提出一种管路布置优化方法.综合考虑安全性、经济性、协调性和可操作性等工程背景建立优化数学模型,改进蚁群算法在处理混合管路布置工况下的缺陷,提出优化可行解搜索的空间状态转移策略,提升信息素启发... 针对舰船管路设计效率低下的问题提出一种管路布置优化方法.综合考虑安全性、经济性、协调性和可操作性等工程背景建立优化数学模型,改进蚁群算法在处理混合管路布置工况下的缺陷,提出优化可行解搜索的空间状态转移策略,提升信息素启发效果并加速算法收敛的信息素扩散机制,面向混合管路布置工况设计多蚁群协同进化机制.基于二次开发技术实现本方法在第三方设计软件上的应用,采用核级一回路管道布置工程案例进行验证.结果表明信息素高斯扩散多蚁群优化(PG-MACO)算法的性能和布置效果优于传统蚁群算法,寻路效率提升58.38%,收敛代数缩短43.24%,布置结果中管路长度缩短33.88%,管路折弯次数减少41.67%,验证了本方法的有效性和工程实用性. 展开更多
关键词 舰船管路 布局优化 蚁群优化算法 信息素扩散
下载PDF
基于ACO算法的跨市域血液信息管理系统的应用与研究
13
作者 司丽萍 《电子设计工程》 2024年第16期166-169,173,共5页
针对我省市域间血站信息孤岛、血液资源无法精准调配实现等问题,对我省各市血站信息管理系统进行组合式联网模式改造,通过Quartz结合蚁群算法(ACO)解决血样跨市域动态规划调度难题,实现市际间全时段精准调配、血液动态需求管理等功能,... 针对我省市域间血站信息孤岛、血液资源无法精准调配实现等问题,对我省各市血站信息管理系统进行组合式联网模式改造,通过Quartz结合蚁群算法(ACO)解决血样跨市域动态规划调度难题,实现市际间全时段精准调配、血液动态需求管理等功能,可有效解决市域间血站信息孤岛、血样多重运力浪费、血样闲置等问题,推动我省血液管理的数字化、智能化、协同化进程。系统运营一年库存废弃率同比下降53.12%,运输成本同比降低(34.15±5.16)元/单位。 展开更多
关键词 血站 信息系统 跨域 蚁群算法 数字化建设
下载PDF
基于遗传算法和蚁群算法的LEACH改进协议
14
作者 徐巍 钟宇超 余成成 《无线电工程》 2024年第1期199-205,共7页
针对无线传感器网络低功耗自适应集簇分层(Low Energy Adaptive Clustering Hierarchy,LEACH)路由协议因能耗不均衡导致节点过早死亡的问题,提出了一种基于遗传算法和蚁群算法改进的LEACH路由协议。在分簇阶段,通过遗传算法选举合理的... 针对无线传感器网络低功耗自适应集簇分层(Low Energy Adaptive Clustering Hierarchy,LEACH)路由协议因能耗不均衡导致节点过早死亡的问题,提出了一种基于遗传算法和蚁群算法改进的LEACH路由协议。在分簇阶段,通过遗传算法选举合理的簇头节点并根据节点的分布划分簇群;在数据传输阶段,通过蚁群算法使簇头节点尽可能选择能量充足且距离较短的路径进行数据传输。仿真结果表明,与传统的分簇路由协议LEACH和LEACH-C相比,改进算法可以使网络的能量消耗更加均衡,并延长网络的生命周期。 展开更多
关键词 低功耗自适应集簇分层协议 节点能耗 分簇 遗传算法 蚁群算法
下载PDF
基于ACO-USK优化VMD参数的滚动轴承故障诊断研究
15
作者 张卫国 王紫阳 +1 位作者 夏立成 陈永和 《中国工程机械学报》 北大核心 2024年第5期695-700,共6页
传统变分模态分解(VMD)技术需要人为主观预设模态分解个数K和二次惩罚因子α,由此可能导致信号的欠分解、过分解、模态混叠或信息丢失等问题,从而影响对滚动轴承早期故障信号的分解效果。本文根据峭度指标对滚动轴承早期故障异常敏感的... 传统变分模态分解(VMD)技术需要人为主观预设模态分解个数K和二次惩罚因子α,由此可能导致信号的欠分解、过分解、模态混叠或信息丢失等问题,从而影响对滚动轴承早期故障信号的分解效果。本文根据峭度指标对滚动轴承早期故障异常敏感的特点,提出了一种以联合平方峭度(USK)指标为目标函数,结合蚁群优化(ACO)算法的ACO-USK优化方法,对VMD模态分解个数K和二次惩罚因子α进行自适应寻优。研究结果表明:对于滚动轴承早期故障信号,与以包络熵(EE)为目标函数的VMD优化方法对比,本文提出的方法既具有较好的包络谱信噪比(SNRES),又有在计算用时上的优越性,具有一定的工程应用价值。 展开更多
关键词 变分模态分解(VMD) 滚动轴承 故障诊断 联合平方峭度(USK) 蚁群优化(acO)算法
下载PDF
Improved Ant Colony Algorithm for Vehicle Scheduling Problem in Airport Ground Service Support 被引量:3
16
作者 Yaping Zhang Ye Chen +2 位作者 Yu Zhang Jian Mao Qian Luo 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第1期1-12,共12页
Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for... Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support. 展开更多
关键词 airport surface traffic ground service support vehicle scheduling topology model improved ant colony algorithm response value
下载PDF
Novel Approach to Nonlinear PID Parameter Optimization Using Ant Colony Optimization Algorithm 被引量:11
17
作者 Duan Hai-bin Wang Dao-bo Yu Xiu-fen 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第2期73-78,共6页
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorith... This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response. 展开更多
关键词 ant colony Optimization ALGORITHM PHEROMONE nonlinear PID parameter optimization
下载PDF
Max-Min Adaptive Ant Colony Optimization Approach to Multi-UAVs Coordinated Trajectory Replanning in Dynamic and Uncertain Environments 被引量:33
18
作者 Hai-bin Duan,Xiang-yin Zhang,Jiang Wu,Guan-jun MaSchool of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第2期161-173,共13页
Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic mode... Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach. 展开更多
关键词 Multiple Uninhabited Aerial Vehicles (multi-UAVs) ant colony Optimization (acO) trajectory replanning collision avoidance Estimated Time of Arrival (ETA)
下载PDF
Blackboard Mechanism Based Ant Colony Theory for Dynamic Deployment of Mobile Sensor Networks 被引量:5
19
作者 Guang-ping Qi Ping Song Ke-jie Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第3期197-203,共7页
A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard m... A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard mechanism is introduced into the system for making pheromone and completing the algorithm. Every node, which can be looked as an ant, makes one information zone in its memory for communicating with other nodes and leaves pheromone, which is created by ant itself in naalre. Then ant colony theory is used to find the optimization scheme for path planning and deployment of mobile Wireless Sensor Network (WSN). We test the algorithm in a dynamic and unconfigurable environment. The results indicate that the algorithm can reduce the power consumption by 13% averagely, enhance the efficiency of path planning and deployment of mobile WSN by 15% averagely. 展开更多
关键词 ant colony algorithm wireless sensor network blackboard mechanism bionic swarm intelligence algorithm
下载PDF
An adaptive ant colony system algorithm for continuous-space optimization problems 被引量:20
20
作者 李艳君 吴铁军 《Journal of Zhejiang University Science》 CSCD 2003年第1期40-46,共7页
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr... Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. 展开更多
关键词 ant colony algorithm Continuous space optimization Pheromone update strategy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部