期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Mesoscale characteristics of Antarctic Intermediate Water in the South Pacific
1
作者 FENG Ying CHEN Xianyao +1 位作者 WANG Qin YUAN Yeli 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第11期92-101,共10页
The Argo float observations are used to investigate the mesoscale characteristics of the Antarctic Intermediate Water (AAIW) in the South Pacific in this paper. It is shown that a subsurface mesoscale phenomenon is ... The Argo float observations are used to investigate the mesoscale characteristics of the Antarctic Intermediate Water (AAIW) in the South Pacific in this paper. It is shown that a subsurface mesoscale phenomenon is probably touched by an Argo float during the float's ascent-descent cycles and is identified by the horizontal salinity gradient between the vertical temperature-salinity profiles. This shows that the transportation of the AAIW may be accompanied with the rich mesoscale characteristics. To derive the spatial length, time, and propagation characteristics of the mesoscale variability of the AAIW, the gridded temperature-salinity dataset ENACT/ENSEMBLE Version 3 constructed on the in-situ observations in the South Pacific since 2005 is used. The Empirical Mode Decomposition method is applied to decompose the isopycnal-averaged salinity anomaly from 26.8 cr0-27.4 ao, where the AAIW mainly resides, into the basin scale and two mesoscale modes. It is found that the first mesoscale mode with the length scale on the order of 1 000 km explains nearly 50% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speeds are slower in the mid-latitude (around 1 cm/s) and faster in the low latitude (around 6 cm/s), but with an increasing in the latitude band on 25^-30~S. The second mesoscale mode is of the length scale on the order of 500 km, explaining about 30% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speed keeps nearly unchanged (around 0.5 cm/s). These results presented the stronger turbulent motion of the subsurface ocean on the spatial scale, and also described the significant role of Argo program for the better understanding of the deep ocean. 展开更多
关键词 mesoscale characteristics subsurface ocean antarctic intermediate water (AAIW) ARGO
下载PDF
Pacific-Indian interocean circulation of the Antarctic Intermediate Water around South Australia
2
作者 YAO Wenjun SHI Jiuxin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第7期4-14,共11页
On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types correspondi... On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean. 展开更多
关键词 antarctic intermediate water Pacific-Indian interocean circulation South Australia World Ocean Circulation Experiment Argo
下载PDF
Variability of Antarctic Intermediate Water south of Australia and its relationship with frontal waves 被引量:1
3
作者 ZHANG LinLin YAN XiaoMei +1 位作者 SUN Che HU DunXin 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第8期1674-1682,共9页
A streamfunction EOF method is applied to a time series of hydrographic sections in the Southern Ocean south of Australia to study water mass variations. Results show that there are large thermohaline variations north... A streamfunction EOF method is applied to a time series of hydrographic sections in the Southern Ocean south of Australia to study water mass variations. Results show that there are large thermohaline variations north of the Subantarctic Front (SAF) at 300–1500 dbar level, indicating upwelling and downwelling of the Antarctic Intermediate Water (AAIW) along isopycnal surfaces. Based on the latest altimeter product, Absolute Dynamic Topography, a mechanism due to frontal wave propagation is proposed to explain this phenomenon, and an index for frontal waves is defined. When the frontal wave is in positive (negative) phase, the SAF flows northeastward (southeastward) with the fresh AAIW downwelling (upwelling). Such mesoscale processes greatly enhance cross-frontal exchanges of water masses. Spectral analysis shows that frontal waves in the Southern Ocean south of Australia are dominated by a period of about 130 days with a phase speed of 4 cm/s and a wavelength of 450 km. 展开更多
关键词 antarctic intermediate water(AAIW) Stream-coordinates Frontalwave EOF
原文传递
The intermediate water in the Philippine Sea 被引量:2
4
作者 ZANG Nan WANG Fan SPRINTALL Janet 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第5期1343-1353,共11页
The dimensional and temporal distribution of Antarctic Intermediate Water(AAIW)and North Pacifi c Intermediate Water(NPIW)in the Philippine Sea were explored using Argo profi les and gridded Argo data.As the salinity ... The dimensional and temporal distribution of Antarctic Intermediate Water(AAIW)and North Pacifi c Intermediate Water(NPIW)in the Philippine Sea were explored using Argo profi les and gridded Argo data.As the salinity minimum of intermediate water from mid-high latitude of the southern and northern hemisphere of the Pacifi c Ocean,the properties of AAIW and NPIW merge at about 10°N with diff erent properties in the Philippine Sea.The core of AAIW is located below 600 dbar with potential density of 27≤σθ≤27.3 kg/m 3 and salinity of 34.5≤S≤34.55.The core of NPIW is located between 300–700 dbar with potential density of 26.2≤σθ≤27 kg/m 3 and salinity of 34≤S≤34.4.The volume of AAIW and NPIW during January 2004 to December 2017 is negatively correlated.The time series of AAIW and NPIW is dominated by signifi cant periods of 6 and 8 months,respectively.The variations of AAIW and NPIW are mainly aff ected by volume transport through a 130°E section by the North Equatorial Current(NEC)and North Equatorial Undercurrent(NEUC). 展开更多
关键词 the intermediate water the antarctic intermediate water the North Pacifi c intermediate water seasonal variation
下载PDF
A quasi-synoptic interpretation of water mass distribution and circulation in the western North Pacific:I.Water mass distribution 被引量:6
5
作者 谢玲玲 田纪伟 +1 位作者 胡敦欣 王凡 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第3期630-639,共10页
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific... With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15°-18°N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15°N with lowest salinity off shore at 21°N, but mainly hugs the Mindanao coast south of 12°N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10°N at 130°E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC). 展开更多
关键词 North Pacific intermediate water (NPIW) North Pacific Tropic water (NPTW) antarctic intermediate water (AAIW)
下载PDF
Climatology and seasonal variability of the Mindanao Undercurrent based on OFES data 被引量:2
6
作者 WANG Caixia LAN Jian WANG Gang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第7期14-20,共7页
The simulation of an ocean general circulation model for the earth simulator (OFES) is transformed to an isopycnal coordinate to investigate the spatial structure and seasonal variability of the Mindanao Under- curr... The simulation of an ocean general circulation model for the earth simulator (OFES) is transformed to an isopycnal coordinate to investigate the spatial structure and seasonal variability of the Mindanao Under- current (MUC). The results show that (1) potential density surfaces, δ0=26.5 and δ0=27.5, can be chosen to encompass the M UC layer. Southern Pacilic tropical water (SPTW), Antarctic Intermediate Water (AAIW) and high potential density water (HPDW) constitute the MUC. (2) Climatologically, the MOC exists in the form of dual-core. In some months, the dual-core structure changes to a single-core structure. (3) Choosing section at 8°N for calculating the transport of the MUC transport is reliable. Potential density constraint provides a good method for calculating the transport of the MOC. (4) The annual mean transport of the MUC is 8.34 × 106 m3/s and varies considerably with seasons: stronger in late spring and weaker in winter. 展开更多
关键词 Mindanao Undercurrent southern Pacilic tropical water antarctic intermediate water
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部