In this paper Pi2 pulsations at Zhongshan Station of Antarctica are analyzed from October 1 - 31, 1996. Their characteristics e. g. occurrence frequency,frequency, and polarization are studied. The characteristics of ...In this paper Pi2 pulsations at Zhongshan Station of Antarctica are analyzed from October 1 - 31, 1996. Their characteristics e. g. occurrence frequency,frequency, and polarization are studied. The characteristics of Pi2 pulsations are summerized as follows: (1 ) Pi2 pulsations at Zhongshan Station usually take place from 2000 MLT to 0200 MLT; the main frequencies are between 6. 79 mHz and 13. 58mHZ; (2 ) Pi2 pulsations with low frequencies are dominent. The range of main frequencies becomes narrow at midnight; (3) The Polarization of Pi2 pulsations are almost linear; (4) About the orientation of major axes the NW-SE direction is dominent before 2200 MLT and NE-SW is dominent after 2200 MLT. The generation mechanism of Pi2 pulsations at Zhongshan Station is discussed theoretically.展开更多
In this paper Pi2 pulsation events at Great Wall Station of Antarctica are analyzed from August 16,1990 to November 20,1990.Their main characteristics e. g.occurrence frequency, frequency,and polarizations are recogni...In this paper Pi2 pulsation events at Great Wall Station of Antarctica are analyzed from August 16,1990 to November 20,1990.Their main characteristics e. g.occurrence frequency, frequency,and polarizations are recognize. The mechanism of excitation for Pi2 pulsations at Great Wall Station is here discussed theoretically.展开更多
Simultaneous measurements from THEMIS spacecraft, GOES11 and ground stations (Canadian Array for Realtime Investiga tions of Magnetic Activity or CARISMA, and 210 magnetic meridian or MM) on March 18, 2009 allow the...Simultaneous measurements from THEMIS spacecraft, GOES11 and ground stations (Canadian Array for Realtime Investiga tions of Magnetic Activity or CARISMA, and 210 magnetic meridian or MM) on March 18, 2009 allow the study of dynamic processes in the nearEarth magnetotail and corresponding Pi2 pulsations on the ground in great detail. Fast earthward flows along with traveling Alfv6n waves and fast mode waves in the Pi2 band were observed by three Time History of Events and Macroscale Interactions during Substorms (THEM/S) probes (P3, P4 and P5) in the nearEarth plasmasbeet. At the mid to highlatitude nightside, the CARISMA stations located near the foot points of the three probes recorded Pi2s with two periods, about 80 s after the earthward fast flows observed by the P4 probe. The longperiod Pi2 (140-150 s) belongs to the transient response Pi2 (TR Pi2), since the travel time of the Alfv6n waves between the plasma sheet and CARISMA stations is very close to half the period of the longperiod Pi2. The shortperiod Pi2 (60-80 s) has the same period band as the perpendicular velocity of the fast flows, which indicates that it may relate to the inertial current caused by periodic braking of the earthward fast flows. The 210 MM stations located at the lowlatitude duskside also observed Pi2s with the same start time, waveform and frequency, about 120 s after the earthward fast flows. Strong poloidal oscillations are shown by GOES11 (23 MLT) and the compressional component (Bb) is highly correlated with H components of the 210 MM stations, whereas the other two components (Br and Be) are not. These results confirm that the lowlatitude Pi2s are generated by cavity mode resonance, which is driven by an impulsive broadband source in the nearEarth magnetotail.展开更多
A measurement profile consisted of 5 sites from Xinyang to Tangyin in Henan Province was set up in September of 1996 to carry out simultaneous observation of Pi2 geomagnetic pulsations. Simultaneity of Pi2 geomagnetic...A measurement profile consisted of 5 sites from Xinyang to Tangyin in Henan Province was set up in September of 1996 to carry out simultaneous observation of Pi2 geomagnetic pulsations. Simultaneity of Pi2 geomagnetic pulsation occurrence along the N-S profile was investigated. Results of analysis pointed out that Pi2 gcomagnetic pulsations appeared at first at the site of Xinyang at the southern end of the profile, the later the same Pi2 geomag netic pulsation appeared, the more north the site was at. Apparent propagation speed of Pi2 in N-S direction in the region is about 140 kin/s. Because Pi2 geomagnetic pulsation varying with time is of instability, and based on characteristics that basic wavelet can be dilated and localized, we selected proper basic wavelat form and by means of wavelet transform to analyze the changes of periods and amplitudes of main periodic components included in Pi2 pulsations with time. The results show that there existed complex form in periods and amplitudes of wavelet varying with time.展开更多
文摘In this paper Pi2 pulsations at Zhongshan Station of Antarctica are analyzed from October 1 - 31, 1996. Their characteristics e. g. occurrence frequency,frequency, and polarization are studied. The characteristics of Pi2 pulsations are summerized as follows: (1 ) Pi2 pulsations at Zhongshan Station usually take place from 2000 MLT to 0200 MLT; the main frequencies are between 6. 79 mHz and 13. 58mHZ; (2 ) Pi2 pulsations with low frequencies are dominent. The range of main frequencies becomes narrow at midnight; (3) The Polarization of Pi2 pulsations are almost linear; (4) About the orientation of major axes the NW-SE direction is dominent before 2200 MLT and NE-SW is dominent after 2200 MLT. The generation mechanism of Pi2 pulsations at Zhongshan Station is discussed theoretically.
文摘In this paper Pi2 pulsation events at Great Wall Station of Antarctica are analyzed from August 16,1990 to November 20,1990.Their main characteristics e. g.occurrence frequency, frequency,and polarizations are recognize. The mechanism of excitation for Pi2 pulsations at Great Wall Station is here discussed theoretically.
基金supported by the National Key Basic Research Program of China (Grant No.2012CB825604)the National Natural Science Foundation of China (Grant Nos.41104093 & 41204122).
文摘Simultaneous measurements from THEMIS spacecraft, GOES11 and ground stations (Canadian Array for Realtime Investiga tions of Magnetic Activity or CARISMA, and 210 magnetic meridian or MM) on March 18, 2009 allow the study of dynamic processes in the nearEarth magnetotail and corresponding Pi2 pulsations on the ground in great detail. Fast earthward flows along with traveling Alfv6n waves and fast mode waves in the Pi2 band were observed by three Time History of Events and Macroscale Interactions during Substorms (THEM/S) probes (P3, P4 and P5) in the nearEarth plasmasbeet. At the mid to highlatitude nightside, the CARISMA stations located near the foot points of the three probes recorded Pi2s with two periods, about 80 s after the earthward fast flows observed by the P4 probe. The longperiod Pi2 (140-150 s) belongs to the transient response Pi2 (TR Pi2), since the travel time of the Alfv6n waves between the plasma sheet and CARISMA stations is very close to half the period of the longperiod Pi2. The shortperiod Pi2 (60-80 s) has the same period band as the perpendicular velocity of the fast flows, which indicates that it may relate to the inertial current caused by periodic braking of the earthward fast flows. The 210 MM stations located at the lowlatitude duskside also observed Pi2s with the same start time, waveform and frequency, about 120 s after the earthward fast flows. Strong poloidal oscillations are shown by GOES11 (23 MLT) and the compressional component (Bb) is highly correlated with H components of the 210 MM stations, whereas the other two components (Br and Be) are not. These results confirm that the lowlatitude Pi2s are generated by cavity mode resonance, which is driven by an impulsive broadband source in the nearEarth magnetotail.
文摘A measurement profile consisted of 5 sites from Xinyang to Tangyin in Henan Province was set up in September of 1996 to carry out simultaneous observation of Pi2 geomagnetic pulsations. Simultaneity of Pi2 geomagnetic pulsation occurrence along the N-S profile was investigated. Results of analysis pointed out that Pi2 gcomagnetic pulsations appeared at first at the site of Xinyang at the southern end of the profile, the later the same Pi2 geomag netic pulsation appeared, the more north the site was at. Apparent propagation speed of Pi2 in N-S direction in the region is about 140 kin/s. Because Pi2 geomagnetic pulsation varying with time is of instability, and based on characteristics that basic wavelet can be dilated and localized, we selected proper basic wavelat form and by means of wavelet transform to analyze the changes of periods and amplitudes of main periodic components included in Pi2 pulsations with time. The results show that there existed complex form in periods and amplitudes of wavelet varying with time.