Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency(UHF)antennas for detecting partial discharge(PD)as a common precursor to faults.However,the effectiveness o...Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency(UHF)antennas for detecting partial discharge(PD)as a common precursor to faults.However,the effectiveness of existing UHF antennas suffers from a number of challenges such as limited bandwidth,relatively large physical size,and low detection sensitivity.The present study addresses these issues by proposing a compact microstrip patch antenna with fixed dimensions of 100 mm×100 mm×1.6 mm.The results of computations yield an optimized antenna design consisting of 2nd-order Hilbert fractal units positioned within a four-layer serpentine arrangement with a fractal unit connection distance of 3.0 mm.Specifically,the optimized antenna design achieves a detection bandwidth for which the voltage standing wave ratio is less than 2 that is approximately 97.3%of the UHF frequency range(0.3–3 GHz).Finally,a prototype antenna is fabricated using standard printed circuit board technology,and the results of experiments demonstrate that the proposed antenna is capable of detecting PD signals at a distance of 8 m from the discharge source.展开更多
Circularly polarized antennas are used in communications between ground stations and satellites to achieve reliable communication links.The right-hand circular polarization and left-hand circular polarization are two ...Circularly polarized antennas are used in communications between ground stations and satellites to achieve reliable communication links.The right-hand circular polarization and left-hand circular polarization are two types of circular polarization in satellite communications,they are used to support uplink and downlink communications.Circularly polarized antennas are used also in radar system for target detection,tracking and identification.The“three-element circularly polarized microstrip array antenna”is designed to produce left-handed circular polarization,make its size compact,make its bandwidth wider than 3.7-4.2GHz and achieve high gain.Circular polarization element antenna and three-element circularly polarized microstrip array antenna are designed and simulated in software HFSS,and the circular polarization element antenna is manufactured and tested in anechoic chamber.For circular polarization element antenna and three-element circularly polarized microstrip array antenna,the study analyzed these parameters:AR,S(1,1),VSWR,bandwidth,normalized impedance,gain and realized gain,radiation efficiency.After optimized,the study get the required results of them.展开更多
Design of multiple-feed lens antennas requires multivariate and multi-objective optimization processes,which can be accelerated by PSO algorithms.However,the PSO algorithm often fails to achieve optimal results with l...Design of multiple-feed lens antennas requires multivariate and multi-objective optimization processes,which can be accelerated by PSO algorithms.However,the PSO algorithm often fails to achieve optimal results with limited computation resources since spaces of candidate solutions are quite large for lens antenna designs.This paper presents a design paradigm for multiple-feed lens antennas based on a physics-assisted particle swarm optimization(PA-PSO)algorithm,which guides the swarm of particles based on laws of physics.As a proof of concept,a design of compact metalens antenna is proposed,which measures unprecedented performances,such as a field of view at±55°,a 21.7 dBi gain with a flatness within 4 dB,a 3-dB bandwidth>12°,and a compact design with a f-number of 0.2.The proposed PA-PSO algorithm reaches the optimal results 6 times faster than the ordinary PSO algorithm,which endows promising applications in the multivariate and multi-objective optimization processes,including but not limited to metalens antenna designs.展开更多
A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutua...A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.展开更多
An accurate estimation of wind loads on telecommunication towers is crucial for design,as well as for perform-ing reliability,resilience,and risk assessments.In particular,drag coefficient and interference factor are ...An accurate estimation of wind loads on telecommunication towers is crucial for design,as well as for perform-ing reliability,resilience,and risk assessments.In particular,drag coefficient and interference factor are the most significant factors for wind load computations.Wind tunnel tests and computational fluid dynamics(CFD)are the most appropriate methods to estimate these parameters.While wind tunnel tests are generally preferred in practice,they require dedicated facilities and personnel,and can be expensive if multiple configurations of tower panels and antennas need to be tested under various wind directions(e.g.,fragility curve development for system resilience analysis).This paper provides a simple,robust,and easily accessible CFD protocol with widespread applicability,offering a practical solution in situations where wind tunnel testing is not feasible,such as complex tower configurations or cases where the cost of running experiments for all the tower-antennas configurations is prohibitively high.Different turbulence models,structural and fluid boundary conditions and mesh types are tested to provide a streamlined CFD modeling strategy that shows good convergence and balances accuracy,computational time,and robustness.The protocol is calibrated and validated with experimental studies available in the literature.To demonstrate the capabilities of the protocol,three lattice tower panels and antennas with different configurations are analyzed as examples.The protocol successfully estimates the drag and lateral wind loads and their coefficients under different wind directions.Noticeable differences are observed between the esti-mated wind loads with this protocol and those computed by a simple linear superposition used in most practical applications,indicating the importance of tower-antenna interaction.Also,as expected,the wind loads recom-mended by design codes overestimate the simulated results.More importantly,the telecommunication design codes inadequately identify the most favorable wind directions that are associated with the lowest wind loads,while the results of the proposed protocol align with observations from experimental studies.This information may be used to select the tower orientation before construction.The findings of this study are of importance for the telecommunication industry,which seeks reliable results with minimal computational efforts.In addition,it enhances the fragility analysis of telecommunication towers under strong winds,and the portfolio risk and resilience assessment of telecommunication systems.展开更多
A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz abso...A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.展开更多
We designed and constructed a novel,compact tri-band monopole antenna for intelligent devices.Multiband behavior was achieved by placing inverted-L shaped stubs of various lengths in a triangular monopole antenna fed ...We designed and constructed a novel,compact tri-band monopole antenna for intelligent devices.Multiband behavior was achieved by placing inverted-L shaped stubs of various lengths in a triangular monopole antenna fed by a coplanar waveguide.The resonance frequency of each band can be controlled by varying the length of the corresponding stub.Three bands,at 2.4(2.37-2.51),3.5(3.34-3.71),and 5.5(4.6-6.4)GHz,were easily obtained using three stubs of different lengths.For miniaturization,a portion of the longest stub(at 2.4 GHz)was printed on the opposite side of the substrate,and connected to the main stub via a shorting pin.To validate the concept,the antenna was fabricated on a low-cost 1.6-mm-thick FR-4 substrate with dimensions of 20×15×1.6 mm^(3).The antenna exhibited a moderate average gain of 2.9 dBi with an omnidirectional radiations over the bandwidths required for RFID,Bluetooth,ISM,WiMAX,andWLAN-band applications.These features make the antenna suitable for compact smart devices.展开更多
This article proposes a new type of antenna which allows getting rid of certain limitations of classic monopole antenna. Like a normal monopole, this antenna belongs to a class of radio antenna consisting of a straigh...This article proposes a new type of antenna which allows getting rid of certain limitations of classic monopole antenna. Like a normal monopole, this antenna belongs to a class of radio antenna consisting of a straight rod-shaped conductor. But unlike a classic monopole, this antenna can operate at all frequencies of a very wide range. In addition, it does not require grounding. The article considers the wide possibilities of antenna applications.展开更多
The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main ...The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.展开更多
An offset elliptical reflector antenna suitable for satellite application was designed and investigated when it was fed by a rectangular horn partially filled.with a dielectric..The.reflector antenna exhibits high gai...An offset elliptical reflector antenna suitable for satellite application was designed and investigated when it was fed by a rectangular horn partially filled.with a dielectric..The.reflector antenna exhibits high gain, low cross polarization. low sidelines and an elliptical beam. Al- though this study has been carried out in view of possible satellite applications, it is clear that this. antenna. is also suitable for use in radar antennas.展开更多
New requirements in communication technologies make it imperative to rehash conventional features such as reconfigurable antennas to adapt with the future adaptability advancements.This paper presents a comprehensive ...New requirements in communication technologies make it imperative to rehash conventional features such as reconfigurable antennas to adapt with the future adaptability advancements.This paper presents a comprehensive review of reconfigurable antennas,specifically in terms of radiation patterns for adaptation in the upcoming Fifth Generation(5G)New Radio frequency bands.They represent the key of antenna technology for materializing a high rate transmission,increased spectral and energy efficiency,reduced interference,and improved the beam steering and beam shaping,thereby land a great promise for planar antennas to boost the mid-band 5G.This review begins with an overview of the underlying principals in reconfiguring radiation patterns,followed by the presentations of the implemented innovative antenna topologies to suit particular advanced features.The various adaptation techniques of radiation pattern reconfigurable planar antennas and the understanding of its antenna design approaches has been investigated for its radiation pattern enhancement.A variety of design configurations have also been critically studied for their compatibilities to be operated in the midband communication systems.The review provides new insights on pattern reconfigurable antenna where such antennas are categorized as beam steering antenna and beamshaping antennas where the operation modes and purposes are clearly investigated.The review also revealed that for mid-band 5G communication,the commonly used electronic switching such as PIN diodes have sufficient isolation loss to provide the required beam performance.展开更多
Low-cost GNSS receivers have recently been gaining reliability as good candidates for ionospheric studies. In line with these gains are genuine concerns about improving the performance of these receivers. In this work...Low-cost GNSS receivers have recently been gaining reliability as good candidates for ionospheric studies. In line with these gains are genuine concerns about improving the performance of these receivers. In this work, we present a comprehensive investigation of the performances of two antennas(the u-blox ANN-MB and the TOPGNSS TOP-106) used on a low-cost GNSS receiver known as the u-blox ZED-F9P. The two antennas were installed on two identical and co-located u-blox receivers. Data used from both receivers cover the period from January to June 2022. Results from the study indicate that the signal strengths are dominantly greater for the receiver with the TOPGNSS antenna than for the receiver with the ANN-MB antenna, implying that the TOPGNSS antenna is better than the ANN-MB antenna in terms of providing greater signal strengths. Summarily, the TOPGNSS antenna also performed better in minimizing the occurrence of cycle slips on phase TEC measurements. There are no conspicuous differences between the variances(computed as 5-min standard deviations) of phase TEC measurements for the two antennas, except for a period around May-June when the TOPGNSS gave a better performance in terms of minimizing the variances in phase TEC. Remarkably, the ANN-MB antenna gave a better performance than the TOPGNSS antenna in terms of minimizing the variances in pseudorange TEC for some satellite observations. For precise horizontal(North and East) positioning, the receiver with the TOPGNSS antenna gave better results, while the receiver with the ANN-MB antenna gave better vertical(Up) positioning. The errors for the receivers of both antennas are typically within about 5 m(the monthly mean was usually smaller than 1 m) in the horizontal direction and within about 10 m(the monthly mean was usually smaller than 4 m) in the vertical direction.展开更多
In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential ...In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.展开更多
The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas.The radiation cost and quality factor of the antenna are influenced by the size of the antenna.Metamateri...The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas.The radiation cost and quality factor of the antenna are influenced by the size of the antenna.Metamaterial antennas allow for the circumvention of the bandwidth restriction for small antennas.Antenna parameters have recently been predicted using machine learning algorithms in existing literature.Machine learning can take the place of the manual process of experimenting to find the ideal simulated antenna parameters.The accuracy of the prediction will be primarily dependent on the model that is used.In this paper,a novel method for forecasting the bandwidth of the metamaterial antenna is proposed,based on using the Pearson Kernel as a standard kernel.Along with these new approaches,this paper suggests a unique hypersphere-based normalization to normalize the values of the dataset attributes and a dimensionality reduction method based on the Pearson kernel to reduce the dimension.A novel algorithm for optimizing the parameters of Convolutional Neural Network(CNN)based on improved Bat Algorithm-based Optimization with Pearson Mutation(BAO-PM)is also presented in this work.The prediction results of the proposed work are better when compared to the existing models in the literature.展开更多
Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in th...Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in their power capacity due to insufficient coupling.The new antenna design takes into account both wave coupling and absorption processes through comprehensive wave coupling and absorption codes,with the dominant parallel wave number k∥of 7.5 m-1at dipole phasing.Through the use of these new ICRF antennas,we are able to achieve 3.8 MW output power and 360 s operation,respectively.The initial experimental results demonstrate the reliability of the antenna design method.展开更多
Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector ...Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector that transmits signals.Smooth deployment is essential for duty services;therefore,accurate and efficient dynamic modeling and analysis of the deployment process are essential.One major challenge is depicting time-varying resistance of the cable network and capturing the cable-truss coupling behavior during the deployment process.This paper proposes a general dynamic analysis methodology for cable-truss coupling.Considering the topological diversity and geometric nonlinearity,the cable network's equilibrium equation is derived,and an explicit expression of the time-varying tension of the boundary cables,which provides the main resistance in truss deployment,is obtained.The deployment dynamic model is established,which considers the coupling effect between the soft cables and deployable truss.The effects of the antenna's driving modes and parameters on the dynamic deployment performance were investigated.A scaled prototype was manufactured,and the deployment experiment was conducted to verify the accuracy of the proposed modeling method.The proposed methodology is suitable for general cable antennas with arbitrary topologies and parameters,providing theoretical guidance for the dynamic performance evaluation of antenna driving schemes.展开更多
This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumorcells inside the human breast.The size of the current antenna is small enough(18mm×21mm×1.6mm)...This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumorcells inside the human breast.The size of the current antenna is small enough(18mm×21mm×1.6mm)todistribute around the breast phantom.The operating frequency has been observed from6–14GHzwith a minimumreturn loss of−61.18 dB and themaximumgain of current proposed antenna is 5.8 dBiwhich is flexiblewith respectto the size of antenna.After the distribution of eight antennas around the breast phantom,the return loss curveswere observed in the presence and absence of tumor cells inside the breast phantom,and these observations showa sharp difference between the presence and absence of tumor cells.The simulated results show that this proposedantenna is suitable for early detection of cancerous cells inside the breast.展开更多
In spatial modulation systems,the reliability of the active antenna detection is of vital importance since the modulated symbols tend to be correctly demodulated when the active antennas are accurately identified.In t...In spatial modulation systems,the reliability of the active antenna detection is of vital importance since the modulated symbols tend to be correctly demodulated when the active antennas are accurately identified.In this paper,we propose a spatial coded modulation(SCM)scheme,which improves the accuracy of the active antenna detection by coding over the transmit antennas.Specifically,the antenna activation pattern in the SCM corresponds to a codeword in a properly designed codebook with a larger minimum Hamming distance than the conventional spatial modulation.As the minimum Hamming distance increases,the reliability of the active antenna detection is directly enhanced,which yields a better system reliability.In addition to the reliability,the proposed SCM scheme also achieves a higher capacity with the identical antenna configuration compared to the conventional counterpart.The optimal maximum likelihood detector is first formulated.Then,a low-complexity suboptimal detector is proposed to reduce the computational complexity.Theoretical derivations of the channel capacity and the bit error rate are presented in various channel scenarios.Further derivation on performance bounding is also provided to reveal the insight of the benefit of increasing the minimum Hamming distance.Numerical results validate the analysis and demonstrate that the proposed SCM outperforms the conventional spatial modulation techniques in both channel capacity and system reliability.展开更多
The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mod...The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.展开更多
This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. In...This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount.展开更多
文摘Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency(UHF)antennas for detecting partial discharge(PD)as a common precursor to faults.However,the effectiveness of existing UHF antennas suffers from a number of challenges such as limited bandwidth,relatively large physical size,and low detection sensitivity.The present study addresses these issues by proposing a compact microstrip patch antenna with fixed dimensions of 100 mm×100 mm×1.6 mm.The results of computations yield an optimized antenna design consisting of 2nd-order Hilbert fractal units positioned within a four-layer serpentine arrangement with a fractal unit connection distance of 3.0 mm.Specifically,the optimized antenna design achieves a detection bandwidth for which the voltage standing wave ratio is less than 2 that is approximately 97.3%of the UHF frequency range(0.3–3 GHz).Finally,a prototype antenna is fabricated using standard printed circuit board technology,and the results of experiments demonstrate that the proposed antenna is capable of detecting PD signals at a distance of 8 m from the discharge source.
文摘Circularly polarized antennas are used in communications between ground stations and satellites to achieve reliable communication links.The right-hand circular polarization and left-hand circular polarization are two types of circular polarization in satellite communications,they are used to support uplink and downlink communications.Circularly polarized antennas are used also in radar system for target detection,tracking and identification.The“three-element circularly polarized microstrip array antenna”is designed to produce left-handed circular polarization,make its size compact,make its bandwidth wider than 3.7-4.2GHz and achieve high gain.Circular polarization element antenna and three-element circularly polarized microstrip array antenna are designed and simulated in software HFSS,and the circular polarization element antenna is manufactured and tested in anechoic chamber.For circular polarization element antenna and three-element circularly polarized microstrip array antenna,the study analyzed these parameters:AR,S(1,1),VSWR,bandwidth,normalized impedance,gain and realized gain,radiation efficiency.After optimized,the study get the required results of them.
基金supported by the National Natural Science Foundation of China(61975026,62375232,6237523262205246 and 61875030)Creative Research Groups of the National Natural Science Foundation of Sichuan Province(2023NSFSC1973)+1 种基金the Shanghai Pilot Program for Basic Research,the National Key Research and Development Program of China(No.2023YFF0613600)Science and Technology Commission of Shanghai Municipality(No.22ZR1432400).
文摘Design of multiple-feed lens antennas requires multivariate and multi-objective optimization processes,which can be accelerated by PSO algorithms.However,the PSO algorithm often fails to achieve optimal results with limited computation resources since spaces of candidate solutions are quite large for lens antenna designs.This paper presents a design paradigm for multiple-feed lens antennas based on a physics-assisted particle swarm optimization(PA-PSO)algorithm,which guides the swarm of particles based on laws of physics.As a proof of concept,a design of compact metalens antenna is proposed,which measures unprecedented performances,such as a field of view at±55°,a 21.7 dBi gain with a flatness within 4 dB,a 3-dB bandwidth>12°,and a compact design with a f-number of 0.2.The proposed PA-PSO algorithm reaches the optimal results 6 times faster than the ordinary PSO algorithm,which endows promising applications in the multivariate and multi-objective optimization processes,including but not limited to metalens antenna designs.
文摘A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.
基金support from the Pennsylvania Department of Community&Economic Development(DCED)through grant PIT-19-02 and of Lehigh University through the“Research Futures:Major Program Development”the“Research Fu-tures:Special Seed Funding Opportunity”grants are gratefully acknowl-edged.
文摘An accurate estimation of wind loads on telecommunication towers is crucial for design,as well as for perform-ing reliability,resilience,and risk assessments.In particular,drag coefficient and interference factor are the most significant factors for wind load computations.Wind tunnel tests and computational fluid dynamics(CFD)are the most appropriate methods to estimate these parameters.While wind tunnel tests are generally preferred in practice,they require dedicated facilities and personnel,and can be expensive if multiple configurations of tower panels and antennas need to be tested under various wind directions(e.g.,fragility curve development for system resilience analysis).This paper provides a simple,robust,and easily accessible CFD protocol with widespread applicability,offering a practical solution in situations where wind tunnel testing is not feasible,such as complex tower configurations or cases where the cost of running experiments for all the tower-antennas configurations is prohibitively high.Different turbulence models,structural and fluid boundary conditions and mesh types are tested to provide a streamlined CFD modeling strategy that shows good convergence and balances accuracy,computational time,and robustness.The protocol is calibrated and validated with experimental studies available in the literature.To demonstrate the capabilities of the protocol,three lattice tower panels and antennas with different configurations are analyzed as examples.The protocol successfully estimates the drag and lateral wind loads and their coefficients under different wind directions.Noticeable differences are observed between the esti-mated wind loads with this protocol and those computed by a simple linear superposition used in most practical applications,indicating the importance of tower-antenna interaction.Also,as expected,the wind loads recom-mended by design codes overestimate the simulated results.More importantly,the telecommunication design codes inadequately identify the most favorable wind directions that are associated with the lowest wind loads,while the results of the proposed protocol align with observations from experimental studies.This information may be used to select the tower orientation before construction.The findings of this study are of importance for the telecommunication industry,which seeks reliable results with minimal computational efforts.In addition,it enhances the fragility analysis of telecommunication towers under strong winds,and the portfolio risk and resilience assessment of telecommunication systems.
文摘A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.
基金This work was supported by the ICT R&D program of MSIT/IITP,[2019-0-00102,A Study on Public Health and Safety in a Complex EMF Environment].This work was also supported by the National Radio ResearchAgency,[Rapid measurement system for new technologyantenna].
文摘We designed and constructed a novel,compact tri-band monopole antenna for intelligent devices.Multiband behavior was achieved by placing inverted-L shaped stubs of various lengths in a triangular monopole antenna fed by a coplanar waveguide.The resonance frequency of each band can be controlled by varying the length of the corresponding stub.Three bands,at 2.4(2.37-2.51),3.5(3.34-3.71),and 5.5(4.6-6.4)GHz,were easily obtained using three stubs of different lengths.For miniaturization,a portion of the longest stub(at 2.4 GHz)was printed on the opposite side of the substrate,and connected to the main stub via a shorting pin.To validate the concept,the antenna was fabricated on a low-cost 1.6-mm-thick FR-4 substrate with dimensions of 20×15×1.6 mm^(3).The antenna exhibited a moderate average gain of 2.9 dBi with an omnidirectional radiations over the bandwidths required for RFID,Bluetooth,ISM,WiMAX,andWLAN-band applications.These features make the antenna suitable for compact smart devices.
文摘This article proposes a new type of antenna which allows getting rid of certain limitations of classic monopole antenna. Like a normal monopole, this antenna belongs to a class of radio antenna consisting of a straight rod-shaped conductor. But unlike a classic monopole, this antenna can operate at all frequencies of a very wide range. In addition, it does not require grounding. The article considers the wide possibilities of antenna applications.
文摘The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.
文摘An offset elliptical reflector antenna suitable for satellite application was designed and investigated when it was fed by a rectangular horn partially filled.with a dielectric..The.reflector antenna exhibits high gain, low cross polarization. low sidelines and an elliptical beam. Al- though this study has been carried out in view of possible satellite applications, it is clear that this. antenna. is also suitable for use in radar antennas.
基金This work was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University,Saudi Arabia.
文摘New requirements in communication technologies make it imperative to rehash conventional features such as reconfigurable antennas to adapt with the future adaptability advancements.This paper presents a comprehensive review of reconfigurable antennas,specifically in terms of radiation patterns for adaptation in the upcoming Fifth Generation(5G)New Radio frequency bands.They represent the key of antenna technology for materializing a high rate transmission,increased spectral and energy efficiency,reduced interference,and improved the beam steering and beam shaping,thereby land a great promise for planar antennas to boost the mid-band 5G.This review begins with an overview of the underlying principals in reconfiguring radiation patterns,followed by the presentations of the implemented innovative antenna topologies to suit particular advanced features.The various adaptation techniques of radiation pattern reconfigurable planar antennas and the understanding of its antenna design approaches has been investigated for its radiation pattern enhancement.A variety of design configurations have also been critically studied for their compatibilities to be operated in the midband communication systems.The review provides new insights on pattern reconfigurable antenna where such antennas are categorized as beam steering antenna and beamshaping antennas where the operation modes and purposes are clearly investigated.The review also revealed that for mid-band 5G communication,the commonly used electronic switching such as PIN diodes have sufficient isolation loss to provide the required beam performance.
基金Centre for Atmospheric Research,Nigeria,for providing the research grant required to conduct this study。
文摘Low-cost GNSS receivers have recently been gaining reliability as good candidates for ionospheric studies. In line with these gains are genuine concerns about improving the performance of these receivers. In this work, we present a comprehensive investigation of the performances of two antennas(the u-blox ANN-MB and the TOPGNSS TOP-106) used on a low-cost GNSS receiver known as the u-blox ZED-F9P. The two antennas were installed on two identical and co-located u-blox receivers. Data used from both receivers cover the period from January to June 2022. Results from the study indicate that the signal strengths are dominantly greater for the receiver with the TOPGNSS antenna than for the receiver with the ANN-MB antenna, implying that the TOPGNSS antenna is better than the ANN-MB antenna in terms of providing greater signal strengths. Summarily, the TOPGNSS antenna also performed better in minimizing the occurrence of cycle slips on phase TEC measurements. There are no conspicuous differences between the variances(computed as 5-min standard deviations) of phase TEC measurements for the two antennas, except for a period around May-June when the TOPGNSS gave a better performance in terms of minimizing the variances in phase TEC. Remarkably, the ANN-MB antenna gave a better performance than the TOPGNSS antenna in terms of minimizing the variances in pseudorange TEC for some satellite observations. For precise horizontal(North and East) positioning, the receiver with the TOPGNSS antenna gave better results, while the receiver with the ANN-MB antenna gave better vertical(Up) positioning. The errors for the receivers of both antennas are typically within about 5 m(the monthly mean was usually smaller than 1 m) in the horizontal direction and within about 10 m(the monthly mean was usually smaller than 4 m) in the vertical direction.
基金Supported by the Natural Science Foundation of Tibet Autonomous Region(XZ202401ZR0025)the National Natural Science Founda-tion of China(62164011,62301081)the Natural Science Foundation of Shaanxi Province(2022JQ-589)。
文摘In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.
文摘The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas.The radiation cost and quality factor of the antenna are influenced by the size of the antenna.Metamaterial antennas allow for the circumvention of the bandwidth restriction for small antennas.Antenna parameters have recently been predicted using machine learning algorithms in existing literature.Machine learning can take the place of the manual process of experimenting to find the ideal simulated antenna parameters.The accuracy of the prediction will be primarily dependent on the model that is used.In this paper,a novel method for forecasting the bandwidth of the metamaterial antenna is proposed,based on using the Pearson Kernel as a standard kernel.Along with these new approaches,this paper suggests a unique hypersphere-based normalization to normalize the values of the dataset attributes and a dimensionality reduction method based on the Pearson kernel to reduce the dimension.A novel algorithm for optimizing the parameters of Convolutional Neural Network(CNN)based on improved Bat Algorithm-based Optimization with Pearson Mutation(BAO-PM)is also presented in this work.The prediction results of the proposed work are better when compared to the existing models in the literature.
基金supported by the National Key Research and Development Program of China (Nos. 2019YFE03070000and 2019YFE03070003)National Natural Science Foundation of China (Nos. 11975265 and 11775258)+2 种基金Comprehensive Research Facility for Fusion Technology Program of China (No. 2018-000052-73-01-001228)the Open Fund of Magnetic Confinement Fusion Laboratory of Anhui Province (No. 2021AMF01001)Hefei Science Center,CAS(No. 2021HSC-KPRD001)。
文摘Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in their power capacity due to insufficient coupling.The new antenna design takes into account both wave coupling and absorption processes through comprehensive wave coupling and absorption codes,with the dominant parallel wave number k∥of 7.5 m-1at dipole phasing.Through the use of these new ICRF antennas,we are able to achieve 3.8 MW output power and 360 s operation,respectively.The initial experimental results demonstrate the reliability of the antenna design method.
基金Supported by National Key R&D Program of China (Grant No.2023YFB3407103)National Natural Science Foundation of China (Grant Nos.52175242,52175027)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector that transmits signals.Smooth deployment is essential for duty services;therefore,accurate and efficient dynamic modeling and analysis of the deployment process are essential.One major challenge is depicting time-varying resistance of the cable network and capturing the cable-truss coupling behavior during the deployment process.This paper proposes a general dynamic analysis methodology for cable-truss coupling.Considering the topological diversity and geometric nonlinearity,the cable network's equilibrium equation is derived,and an explicit expression of the time-varying tension of the boundary cables,which provides the main resistance in truss deployment,is obtained.The deployment dynamic model is established,which considers the coupling effect between the soft cables and deployable truss.The effects of the antenna's driving modes and parameters on the dynamic deployment performance were investigated.A scaled prototype was manufactured,and the deployment experiment was conducted to verify the accuracy of the proposed modeling method.The proposed methodology is suitable for general cable antennas with arbitrary topologies and parameters,providing theoretical guidance for the dynamic performance evaluation of antenna driving schemes.
基金the International Science and Technology Cooperation Project of the Shenzhen Science and Technology Commission(GJHZ20200731095804014).
文摘This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumorcells inside the human breast.The size of the current antenna is small enough(18mm×21mm×1.6mm)todistribute around the breast phantom.The operating frequency has been observed from6–14GHzwith a minimumreturn loss of−61.18 dB and themaximumgain of current proposed antenna is 5.8 dBiwhich is flexiblewith respectto the size of antenna.After the distribution of eight antennas around the breast phantom,the return loss curveswere observed in the presence and absence of tumor cells inside the breast phantom,and these observations showa sharp difference between the presence and absence of tumor cells.The simulated results show that this proposedantenna is suitable for early detection of cancerous cells inside the breast.
文摘In spatial modulation systems,the reliability of the active antenna detection is of vital importance since the modulated symbols tend to be correctly demodulated when the active antennas are accurately identified.In this paper,we propose a spatial coded modulation(SCM)scheme,which improves the accuracy of the active antenna detection by coding over the transmit antennas.Specifically,the antenna activation pattern in the SCM corresponds to a codeword in a properly designed codebook with a larger minimum Hamming distance than the conventional spatial modulation.As the minimum Hamming distance increases,the reliability of the active antenna detection is directly enhanced,which yields a better system reliability.In addition to the reliability,the proposed SCM scheme also achieves a higher capacity with the identical antenna configuration compared to the conventional counterpart.The optimal maximum likelihood detector is first formulated.Then,a low-complexity suboptimal detector is proposed to reduce the computational complexity.Theoretical derivations of the channel capacity and the bit error rate are presented in various channel scenarios.Further derivation on performance bounding is also provided to reveal the insight of the benefit of increasing the minimum Hamming distance.Numerical results validate the analysis and demonstrate that the proposed SCM outperforms the conventional spatial modulation techniques in both channel capacity and system reliability.
基金supported by the Beijing Municipal Natural Science Foundation (No. 1242015)Discipline Construction of Material Science and Engineering (Nos. 21090122014 and 21090123007)。
文摘The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.
基金financed by the National Key Research and Development Program of China,High efficiency space satellite charging system based on microwave wireless energy transfer technology(Grant No.2021YFB3900304)。
文摘This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount.