To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Div...To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Diversity order and array gain were also achieved for further insight. The study was based on the information theory that physical layer security can be guaranteed when the quality of the main channel is higher than that of the eavesdropper's channel. Monte Carlo simulations well validated the numerical results of analytic expressions. It was shown that antenna correlation is detrimental to secrecy performance when average SNR of the main channel is at medium and high level. Interestingly, when average SNR of the main channel reduces to low level, the effect of antenna correlation becomes benefi cial to secrecy performance.展开更多
In spatial modulation systems,the reliability of the active antenna detection is of vital importance since the modulated symbols tend to be correctly demodulated when the active antennas are accurately identified.In t...In spatial modulation systems,the reliability of the active antenna detection is of vital importance since the modulated symbols tend to be correctly demodulated when the active antennas are accurately identified.In this paper,we propose a spatial coded modulation(SCM)scheme,which improves the accuracy of the active antenna detection by coding over the transmit antennas.Specifically,the antenna activation pattern in the SCM corresponds to a codeword in a properly designed codebook with a larger minimum Hamming distance than the conventional spatial modulation.As the minimum Hamming distance increases,the reliability of the active antenna detection is directly enhanced,which yields a better system reliability.In addition to the reliability,the proposed SCM scheme also achieves a higher capacity with the identical antenna configuration compared to the conventional counterpart.The optimal maximum likelihood detector is first formulated.Then,a low-complexity suboptimal detector is proposed to reduce the computational complexity.Theoretical derivations of the channel capacity and the bit error rate are presented in various channel scenarios.Further derivation on performance bounding is also provided to reveal the insight of the benefit of increasing the minimum Hamming distance.Numerical results validate the analysis and demonstrate that the proposed SCM outperforms the conventional spatial modulation techniques in both channel capacity and system reliability.展开更多
Information theoretical results have shown that Distributed Antenna Systems (DAS) can obtain higher capacity than Co-located Antenna Systems (CAS). In this paper,we investigate a downlink port selection and power allo...Information theoretical results have shown that Distributed Antenna Systems (DAS) can obtain higher capacity than Co-located Antenna Systems (CAS). In this paper,we investigate a downlink port selection and power allocation scheme in Distributed Multiple-Input Multiple-Output (D-MIMO) systems,where Distributed Antenna (DA) ports randomly locate in the cell. The contri-bution of this paper can be summarized as two parts. Firstly,we analyze how antenna correlation af-fects power allocation in D-MIMO systems. Secondly,based on large scale fading and antenna corre-lation,a low-complexity port selection and power allocation scheme is proposed. In the proposed scheme,we take both large scale fading and antenna correlation into consideration. Moreover,User Equipment (UE) only needs to feedback the rank of transmit antenna correlation matrix,which will not increase system complexity too much. Simulation results verify the capacity improvement based on the proposed power allocation scheme.展开更多
A more accurate correlated multiple input and multiple output (MIMO) channel model for IEEE 802.16n is presented. On one hand, this MIMO channel model can obtain more precise antenna correlation, which is a key char...A more accurate correlated multiple input and multiple output (MIMO) channel model for IEEE 802.16n is presented. On one hand, this MIMO channel model can obtain more precise antenna correlation, which is a key character for MIMO channel and important for the research of IEEE 802.16n and MIMO technologies. On the other hand, it maintains a low complexity of simulation.展开更多
文摘To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Diversity order and array gain were also achieved for further insight. The study was based on the information theory that physical layer security can be guaranteed when the quality of the main channel is higher than that of the eavesdropper's channel. Monte Carlo simulations well validated the numerical results of analytic expressions. It was shown that antenna correlation is detrimental to secrecy performance when average SNR of the main channel is at medium and high level. Interestingly, when average SNR of the main channel reduces to low level, the effect of antenna correlation becomes benefi cial to secrecy performance.
文摘In spatial modulation systems,the reliability of the active antenna detection is of vital importance since the modulated symbols tend to be correctly demodulated when the active antennas are accurately identified.In this paper,we propose a spatial coded modulation(SCM)scheme,which improves the accuracy of the active antenna detection by coding over the transmit antennas.Specifically,the antenna activation pattern in the SCM corresponds to a codeword in a properly designed codebook with a larger minimum Hamming distance than the conventional spatial modulation.As the minimum Hamming distance increases,the reliability of the active antenna detection is directly enhanced,which yields a better system reliability.In addition to the reliability,the proposed SCM scheme also achieves a higher capacity with the identical antenna configuration compared to the conventional counterpart.The optimal maximum likelihood detector is first formulated.Then,a low-complexity suboptimal detector is proposed to reduce the computational complexity.Theoretical derivations of the channel capacity and the bit error rate are presented in various channel scenarios.Further derivation on performance bounding is also provided to reveal the insight of the benefit of increasing the minimum Hamming distance.Numerical results validate the analysis and demonstrate that the proposed SCM outperforms the conventional spatial modulation techniques in both channel capacity and system reliability.
基金Supported by the National High Technology Research and Development Program of China (863 Program,No.2006AA01Z272 and No.2006AA01Z283)Beijing Municipal Science & Technology Commission (No.D08080100620802)
文摘Information theoretical results have shown that Distributed Antenna Systems (DAS) can obtain higher capacity than Co-located Antenna Systems (CAS). In this paper,we investigate a downlink port selection and power allocation scheme in Distributed Multiple-Input Multiple-Output (D-MIMO) systems,where Distributed Antenna (DA) ports randomly locate in the cell. The contri-bution of this paper can be summarized as two parts. Firstly,we analyze how antenna correlation af-fects power allocation in D-MIMO systems. Secondly,based on large scale fading and antenna corre-lation,a low-complexity port selection and power allocation scheme is proposed. In the proposed scheme,we take both large scale fading and antenna correlation into consideration. Moreover,User Equipment (UE) only needs to feedback the rank of transmit antenna correlation matrix,which will not increase system complexity too much. Simulation results verify the capacity improvement based on the proposed power allocation scheme.
文摘A more accurate correlated multiple input and multiple output (MIMO) channel model for IEEE 802.16n is presented. On one hand, this MIMO channel model can obtain more precise antenna correlation, which is a key character for MIMO channel and important for the research of IEEE 802.16n and MIMO technologies. On the other hand, it maintains a low complexity of simulation.