In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one compr...In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one comprehensive objective function,which facilitates an end-to-end way for optimization.Then,to increase the efficiency of surrogate construction,we propose the MF simulation-based BO(MFBO),of which the surrogate model using MF simulation is introduced based on the theory of multi-output Gaussian process.To further use the low-fidelity(LF)simulation data,the modified MFBO(M-MFBO)is subsequently proposed.By picking out the most potential points from the LF simulation data and re-simulating them in a high-fidelity(HF)way,the M-MFBO has a possibility to obtain a better result with negligible overhead compared to the MFBO.Finally,two antennas are used to testify the proposed algorithms.It shows that the HF simulation-based BO(HFBO)outperforms the traditional algorithms,the MFBO performs more effectively than the HFBO,and sometimes a superior optimization result can be achieved by reusing the LF simulation data.展开更多
Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area wit...Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area within artificial intelligence(AI)that focuses on obtaining valuable information out of data,explaining why ML has often been related to stats and data science.An advanced meta-heuristic optimization algorithm is proposed in this work for the optimization problem of antenna architecture design.The algorithm is designed,depending on the hybrid between the Sine Cosine Algorithm(SCA)and the Grey Wolf Optimizer(GWO),to train neural networkbased Multilayer Perceptron(MLP).The proposed optimization algorithm is a practical,versatile,and trustworthy platform to recognize the design parameters in an optimal way for an endorsement double T-shaped monopole antenna.The proposed algorithm likewise shows a comparative and statistical analysis by different curves in addition to the ANOVA and T-Test.It offers the superiority and validation stability evaluation of the predicted results to verify the procedures’accuracy.展开更多
A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing grav...A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing gravitational kinematics (motion of masses under the influence of gravity). It has been very effective in addressing a wide range of antenna and other problems and normally employs only positive gravity. With positive gravity the six element CFO-designed Yagi array described here exhibits excellent performance with respect to the objectives of impedance bandwidth and forward gain. This paper addresses the question of what happens when a small amount of negative gravity is injected into the CFO algorithm. Does doing so have any effect, beneficial, negative or neutral? In this particular case negative gravity improves CFO’s exploration and creates a region of optimality containing many designs that perform about as well as or better than the array discovered with only positive gravity. Without some negative gravity these array configurations are overlooked. This Yagi-Uda array design example suggests that antennas optimized or designed using deterministic CFO may well benefit by including a small amount of negative gravity, and that the negative gravity approach merits further study.展开更多
We propose a competitive binary multi-objective grey wolf optimizer(CBMOGWO)to reduce the heavy computational burden of conventional multi-objective antenna topology optimization problems.This method introduces a popu...We propose a competitive binary multi-objective grey wolf optimizer(CBMOGWO)to reduce the heavy computational burden of conventional multi-objective antenna topology optimization problems.This method introduces a population competition mechanism to reduce the burden of electromagnetic(EM)simulation and achieve appropriate fitness values.Furthermore,we introduce a function of cosine oscillation to improve the linear convergence factor of the original binary multi-objective grey wolf optimizer(BMOGWO)to achieve a good balance between exploration and exploitation.Then,the optimization performance of CBMOGWO is verified on 12 standard multi-objective test problems(MOTPs)and four multi-objective knapsack problems(MOKPs)by comparison with the original BMOGWO and the traditional binary multi-objective particle swarm optimization(BMOPSO).Finally,the effectiveness of our method in reducing the computational cost is validated by an example of a compact high-isolation dual-band multiple-input multiple-output(MIMO)antenna with high-dimensional mixed design variables and multiple objectives.The experimental results show that CBMOGWO reduces nearly half of the computational cost compared with traditional methods,which indicates that our method is highly efficient for complex antenna topology optimization problems.It provides new ideas for exploring new and unexpected antenna structures based on multi-objective evolutionary algorithms(MOEAs)in a flexible and efficient manner.展开更多
基金supported by the National Key Research and Development Program of China(2019YFB1803205)the Key Research and Development Project of Shaanxi Province(2019GY-007)+1 种基金the National Natural Science Foundation of China(61801369)the Fundamental R esearch Funds for the Central Universities(XZD012021012)。
文摘In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one comprehensive objective function,which facilitates an end-to-end way for optimization.Then,to increase the efficiency of surrogate construction,we propose the MF simulation-based BO(MFBO),of which the surrogate model using MF simulation is introduced based on the theory of multi-output Gaussian process.To further use the low-fidelity(LF)simulation data,the modified MFBO(M-MFBO)is subsequently proposed.By picking out the most potential points from the LF simulation data and re-simulating them in a high-fidelity(HF)way,the M-MFBO has a possibility to obtain a better result with negligible overhead compared to the MFBO.Finally,two antennas are used to testify the proposed algorithms.It shows that the HF simulation-based BO(HFBO)outperforms the traditional algorithms,the MFBO performs more effectively than the HFBO,and sometimes a superior optimization result can be achieved by reusing the LF simulation data.
文摘Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area within artificial intelligence(AI)that focuses on obtaining valuable information out of data,explaining why ML has often been related to stats and data science.An advanced meta-heuristic optimization algorithm is proposed in this work for the optimization problem of antenna architecture design.The algorithm is designed,depending on the hybrid between the Sine Cosine Algorithm(SCA)and the Grey Wolf Optimizer(GWO),to train neural networkbased Multilayer Perceptron(MLP).The proposed optimization algorithm is a practical,versatile,and trustworthy platform to recognize the design parameters in an optimal way for an endorsement double T-shaped monopole antenna.The proposed algorithm likewise shows a comparative and statistical analysis by different curves in addition to the ANOVA and T-Test.It offers the superiority and validation stability evaluation of the predicted results to verify the procedures’accuracy.
文摘A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing gravitational kinematics (motion of masses under the influence of gravity). It has been very effective in addressing a wide range of antenna and other problems and normally employs only positive gravity. With positive gravity the six element CFO-designed Yagi array described here exhibits excellent performance with respect to the objectives of impedance bandwidth and forward gain. This paper addresses the question of what happens when a small amount of negative gravity is injected into the CFO algorithm. Does doing so have any effect, beneficial, negative or neutral? In this particular case negative gravity improves CFO’s exploration and creates a region of optimality containing many designs that perform about as well as or better than the array discovered with only positive gravity. Without some negative gravity these array configurations are overlooked. This Yagi-Uda array design example suggests that antennas optimized or designed using deterministic CFO may well benefit by including a small amount of negative gravity, and that the negative gravity approach merits further study.
基金supported by the National Natural Science Foundation of China(Nos.61801521 and 61971450)the Natural Science Foundation of Hunan Province,China(No.2018JJ2533)the Fundamental Research Funds for the Central Universities,China(Nos.2018gczd014and 20190038020050)。
文摘We propose a competitive binary multi-objective grey wolf optimizer(CBMOGWO)to reduce the heavy computational burden of conventional multi-objective antenna topology optimization problems.This method introduces a population competition mechanism to reduce the burden of electromagnetic(EM)simulation and achieve appropriate fitness values.Furthermore,we introduce a function of cosine oscillation to improve the linear convergence factor of the original binary multi-objective grey wolf optimizer(BMOGWO)to achieve a good balance between exploration and exploitation.Then,the optimization performance of CBMOGWO is verified on 12 standard multi-objective test problems(MOTPs)and four multi-objective knapsack problems(MOKPs)by comparison with the original BMOGWO and the traditional binary multi-objective particle swarm optimization(BMOPSO).Finally,the effectiveness of our method in reducing the computational cost is validated by an example of a compact high-isolation dual-band multiple-input multiple-output(MIMO)antenna with high-dimensional mixed design variables and multiple objectives.The experimental results show that CBMOGWO reduces nearly half of the computational cost compared with traditional methods,which indicates that our method is highly efficient for complex antenna topology optimization problems.It provides new ideas for exploring new and unexpected antenna structures based on multi-objective evolutionary algorithms(MOEAs)in a flexible and efficient manner.