The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input mul...The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input multiple-output (MIMO) system to analyze the ergodic capacity of the GDAS and make conclusions that it is impossible to achieve an analytical expression for the ergodic capacity of the GDAS. Moreover, in order to evaluate the performance of the ergodic capacity of the GDAS conveniently, the analytical lower bound and upper bound of the ergodic capacity of the GDAS are derived by using the results from multivariate statistics and matrix inequalities, under the scenarios of Rayleigh-lognormal fading and equal power allocation scheme at transmitter. Finally, the analytical bounds are verified by comparisons with the numerical results.展开更多
Due to the complexity of the composite fading channel, a new simplified channel model is proposed to analyze the bit error ratio(BER) performance of the distributed antenna system (DAS). First, instead of the gamm...Due to the complexity of the composite fading channel, a new simplified channel model is proposed to analyze the bit error ratio(BER) performance of the distributed antenna system (DAS). First, instead of the gamma-log-normal distribution, the log-normal distribution is applied to describe the output signal to noise ratio(SNR) after maximal ratio combining (MRC) at the receiver. Then, assuming that the channel state information(CSI) is available to the transmitter, by employing the Gauss-Hermite integral, an approximate analytical expression of the BER is derived for the downlink of the DAS with antenna selective transmission and MRC. Finally, the results of a Monte Carlo simulation show that the analytical results match the simulation results. Therefore, it can be concluded that the proposed approximate channel model is effective and accurate, and the derived analytical expression can be used to evaluate the real system performance.展开更多
This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed a...This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.展开更多
Discrete-rate adaptive modulation (AM) scheme for distributed antenna system (DAS) with imperfect channel state information (CSI) is developed, and the corresponding performance is investigated in composite Rayl...Discrete-rate adaptive modulation (AM) scheme for distributed antenna system (DAS) with imperfect channel state information (CSI) is developed, and the corresponding performance is investigated in composite Rayleigh channel. Subject to target bit error rate (BER) constraint, an improved fixed switching threshold (FST) for the AM scheme is presented by means of tightly-approximate BER expression, and it can avoid the performance loss fxom conventional FST. Based on the imperfect CSI, the variable switching threshold (VST) is derived by utilizing the maximum a posteriori method. This VST includes the improved FST as a special case, and may lower the impact of estimation error on the performance. By the switching thresholds, the spectrum efficiency (SE) and average BER of the system are respectively derived, and resulting closed- form expressions are attained. With these expressions, the system performance can be effectively evaluated. Simulation results show that the derived theoretical SE and BER can match the simulations well. Moreover, the AM with the presented FST has higher SE than that with the conventional one, and the AM with VST can tolerate the large estimation error while maintaining the target BER.展开更多
Most of studies on Distributed Antenna System(DAS) focus on maximizing the sum capacity and perfect channel state information at transmitter(CSIT).However,CSI is inevitable imperfect in practical wireless networks.Bas...Most of studies on Distributed Antenna System(DAS) focus on maximizing the sum capacity and perfect channel state information at transmitter(CSIT).However,CSI is inevitable imperfect in practical wireless networks.Based on the sources of error,there are two models.One assumes error lies in a bounded region,the other assumes random error.Accordingly,we propose two joint antenna selection(AS) and robustbeamforming schemes aiming to minimize the total transmit power at antenna nodes subject to quality of service(QoS) guarantee for all the mobile users(MUs) in multicell DAS.This problem is mathematically intractable.For the bounded error model,we cast it into a semidefinite program(SDP) using semidefinite relaxation(SDR) and S-procedure.For the second,we first design outage constrained robust beamforming and then formulate it as an SDP based on the Bernstein-type inequality,which we generalize it to the multi-cell DAS.Simulation results verify the effectiveness of the proposed methods.展开更多
The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where...The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.展开更多
Considering that perfect channel state information(CSI)is hard to obtain in practice,the capacity of downlink distributed antennas system(DAS)with imperfect CSI is analyzed over Rayleigh fading channel.Based on the pe...Considering that perfect channel state information(CSI)is hard to obtain in practice,the capacity of downlink distributed antennas system(DAS)with imperfect CSI is analyzed over Rayleigh fading channel.Based on the performance analysis,using the probability density function and numerical calculation,an accurate closedform expression of ergodic capacity of downlink DAS under imperfect CSI is derived.It includes the one under perfect CSI as a special case.This theoretical expression can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI due to its accuracy.Simulation results indicate that the theoretical analysis agrees well with the corresponding simulation,and the capacity can be increased effectively by decreasing the estimation error and/or path loss.展开更多
This paper investigates the downlink capacity distribution and the outage probability of the interested area of maximum ratio transmission-selection combining(MRT-SC) scheme in the distributed antenna system(DAS).Comp...This paper investigates the downlink capacity distribution and the outage probability of the interested area of maximum ratio transmission-selection combining(MRT-SC) scheme in the distributed antenna system(DAS).Composite fading channels are assumed,which include path loss,lognormal shadowing and multi-path Rayleigh fading.Analytical approximations of the capacity's cumulative distribution function(CDF),the outage capacity,the mean capacity,and the outage probability of the interested area are derived by means of moment generation function(MGF) and Gauss-Hermite series expansion based approaches.The influence of antenna number,path loss exponent,and shadowing standard deviation on the capacity distribution are investigated.The simulation results agree with the analytical approximations well,and thus the analytical approximations are able to substitute the time-intensive Monte Carlo simulation for further investigation.展开更多
This paper focuses on analyzing the ergodic capacity performance of limited feedback (LFB) beamforming in multi-user distributed antenna system (DAS). In such a system, multi-user interference (MUI) is inevitably due ...This paper focuses on analyzing the ergodic capacity performance of limited feedback (LFB) beamforming in multi-user distributed antenna system (DAS). In such a system, multi-user interference (MUI) is inevitably due to the channel uncertainties caused by quantization error. Considering this, we propose a parameter named effective ergodic capacity rate (EECR), which denotes the capacity offset between finite rate feedback and perfect channel state information (CSI). The simulation results show that the derived approximated EECR is very tight to actual EECR. Based on the approximated EECR, an adaptive minimum bit feedback scheme is proposed, which can effectively reduce the overhead of feedback channel and the complexity of the system. The simulation results verify the effectiveness of the proposed scheme.展开更多
To minimize the outage probability of the cell (OPC) in downlink distributed antenna systems with selection transmission, a complex-encoding genetic algorithm (GA) is proposed to find the optimal locations of the ...To minimize the outage probability of the cell (OPC) in downlink distributed antenna systems with selection transmission, a complex-encoding genetic algorithm (GA) is proposed to find the optimal locations of the antenna elements (AEs). First, the outage probability at a fixed location in the cell is investigated. Next, an analytical expression of the OPC is derived, which is a function of the AE locations. Then the OPC is used as the objective function of the antenna placement optimization problem, and the complex- encoding GA is used to find the optimal AE locations in the cell. Numerical results show that the optimal AE locations are symmetric about the cell center, and the outage probability contours are also given with the optimal antenna placement. The algorithm has a good convergence and can also be used to determine the number of AEs which should be installed in order to satisfy the certain OPC value. Lastly, verification of the OPC's analytical expression is carried out by Monte Carlo simulations. The OPC with optimal AE locations is about 10% lower than the values with completely random located AEs.展开更多
The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems. Based on the Finite Difference Time Domain (FDTD) algorithm, using the mobil...The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems. Based on the Finite Difference Time Domain (FDTD) algorithm, using the mobile phone shielding device as the multiple antenna systems example, the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method. The effectivity of prediction method is verified by comparing the prediciton results with the measurment results. About 80% of the error can be controlled less than dB. The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.展开更多
In this paper, the asymptotic sum rate of a multi-user distributed antenna system (DAS) is analyzed. To mitigate inter-user interference, minimum mean squared error (MMSE) receivers are utilized to cooperatively p...In this paper, the asymptotic sum rate of a multi-user distributed antenna system (DAS) is analyzed. To mitigate inter-user interference, minimum mean squared error (MMSE) receivers are utilized to cooperatively process received signals in the uplink. It shows that inter-user interference is efficiently mitigated and the uplink sum rate of a multi-user DAS is greatly improved by adopting MMSE receivers. For very large number of users and remote antennas, the asymptotic uplink sum rate of MMSE receivers is derived by using virtue of the random matrix theory, which can be The approximation is verified to be quite accurate by Monte Carlo simply calculated in an iterative way simulations.展开更多
A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (...A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.展开更多
The energy efficiency(EE) of distributed antenna system with quality of service(Qo S) requirement is investigated over composite Rayleigh fading channel,where the shadow fading,path loss and Rayleigh fading are all co...The energy efficiency(EE) of distributed antenna system with quality of service(Qo S) requirement is investigated over composite Rayleigh fading channel,where the shadow fading,path loss and Rayleigh fading are all considered. Our aim is to maximize the EE which is defined as the ratio of the transmission rate to the total consumed power subject to the maximum transmit power of each remote antenna constraint and Qo S(target BER) requirement. According to the definition of EE and using the upper bound of average EE,the optimized objective function is provided. Based on this,utilizing Karush-KuhnTucker conditions and numerical calculation,a suboptimal energy efficient power allocation(PA) scheme is developed,and the closedform expression of PA coefficients is derived. The scheme may obtain the EE performance close to the existing optimal scheme. Moreover,it has relatively lower complexity than the existing scheme because only the statistic channel information and less iteration are required. Simulation results show the presented scheme is valid and can meet the target BER requirement,and the EE can be increased as target BER requirement decreases.展开更多
The mathematical model of electromagnetic compatibility and the distribution of aircraft antenna system have been investigated. The solutions of the antenna gain and electromagnetic interference margin in the regions ...The mathematical model of electromagnetic compatibility and the distribution of aircraft antenna system have been investigated. The solutions of the antenna gain and electromagnetic interference margin in the regions of low frequency, resonance and high frequency were discussed. By using the basic analytical method of the EMI margin the distributed antenna system can be determined. The main program flow chart of distributed antenna design were given, and illustrated with examples of the microstrip antennas.展开更多
The Chinese Spectral Radio Heliograph(CSRH) is an advanced aperture synthesis solar radio heliograph, independently developed by National Astronomical Observatories, Chinese Academy of Sciences. It consists of 100 r...The Chinese Spectral Radio Heliograph(CSRH) is an advanced aperture synthesis solar radio heliograph, independently developed by National Astronomical Observatories, Chinese Academy of Sciences. It consists of 100 reflector antennas,which are grouped into two antenna arrays(CSRH-I and CSRH-II) for low and high frequency bands respectively. The frequency band of CSRH-I is 0.4–2 GHz and that for CSRH-II is 2–15 GHz. In the antenna and feed system, CSRH uses eleven feeds to receive signals coming from the Sun. The radiation pattern has a lower side lobe and the back lobe of the feed is well illuminated. The characteristics of gain G and antenna noise temperature T affect the quality of solar radio imaging. For CSRH, the measured G is larger than 60 d Bi and T is less than 120 K. After CSRH-I was established, we successfully captured a solar radio burst between 1.2–1.6 GHz on 2010 November12 using this instrument and this event was confirmed through observations with the Solar Broadband Radio Spectrometer at 2.84 GHz and the Geostationary Operational Environmental Satellite. In addition, an image obtained from CSRH-I clearly revealed the profile of the solar radio burst. The other observational work involved the imaging the Fengyun-2E geosynchronous satellite which is assumed to be a point source.Results indicate that the data processing method applied in this study for deleting errors in a noisy image could be used for processing images from other sources.展开更多
Smart communities are an emerging communication means in which humans and smart devices will interact with each other and deliver ubiquitous services by exploiting social intelligence.Distributed antenna system(DAS),o...Smart communities are an emerging communication means in which humans and smart devices will interact with each other and deliver ubiquitous services by exploiting social intelligence.Distributed antenna system(DAS),one of the key technologies to realize smart decisions in smart communities,can settle network smart coverage problem and improve system energy/spectrum efficiency significantly.Considering that energy consumption is an important element for community communications,in this paper,we survey the existing green DAS research for smart communities.In particular,our investigation covers antenna distribution,system capacity,spectrum efficiency,energy efficiency,and green access issues.Moreover,we analyze the existing application opportunities and challenges.This survey contributes to better understanding of the challenges and approaches for green DAS in existing smart community networks and further shed novel light on some future research directions.展开更多
This paper presents an outage analysis of distributed antennas system(DAS) suffering from shadowed Nakagami-m fading environment where the desired signal also suffers from co-channel interference. The desired signal a...This paper presents an outage analysis of distributed antennas system(DAS) suffering from shadowed Nakagami-m fading environment where the desired signal also suffers from co-channel interference. The desired signal and interfering signal are subjected to path loss,multipath and shadowing fading. Based on Wilkinson's method,the signal to interference ratio(SIR) probability density function(PDF) of fixed DAS is obtained. Some numerical results of outage probability with different parameters are analyzed. The analysis results can provide sufficient precision for evaluating the outage performance of DAS.展开更多
In recent years,there has been an increasing demand to improve cellular communication services in several aspects.The aspect that received the most attention is improving the quality of coverage through using smart an...In recent years,there has been an increasing demand to improve cellular communication services in several aspects.The aspect that received the most attention is improving the quality of coverage through using smart antennas which consist of array antennas.this paper investigates the main characteristics and design of the three types of array antennas of the base station for better coverage through simulation(MATLAB)which provides field and strength patterns measured in polar and rectangular coordinates for a variety of conditions including broadsides,ordinary End-fire,and increasing directivity End-fire which is typically used in smart antennas.The method of analysis was applied to twenty experiments of process design to each antenna type separately,so sixty results were obtained from the radiation pattern indicating the parameters for each radiation pattern.Moreover,nineteen design experiments were described in this section.It is hoped that the results obtained from this study will help engineers solve coverage problems as well as improve the quality of cellular communication networks.展开更多
A compact self-isolated Multi Input Multi Output (MIMO) antennaarray is presented for 5G mobile phone devices. The proposed antenna systemis operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antenna...A compact self-isolated Multi Input Multi Output (MIMO) antennaarray is presented for 5G mobile phone devices. The proposed antenna systemis operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antennaelements placed along two side edges of a mobile device, which meets the currenttrend requirements of full-screen smartphone devices. Each antenna element isdivided into two parts, a front part and back part. The front part consists of anI-shaped feeding line and a modified Hilbert fractal monopole antenna, whereasthe back part is an L-shaped element shorted to the system ground by a0.5 mm short stub. A desirable compactness can be obtained by utilizing the Hilbert space-filling property where the antenna element’s overall planar size printedon the side-edge frame is just (9.57 mm × 5.99 mm). The proposed MIMO antenna system has been simulated, analyzed, fabricated and tested. Based on the selfisolated property, good isolation (better than 15 dB) is attained without employingadditional decoupling elements and/or isolation techniques, which increases system complexity and reduces the antenna efficiency. The scattering parameters,antenna efficiencies, antenna gains, and antenna radiation characteristics areinvestigated to assess the proposed antenna performance. For evaluating the proposed antenna array system performance, the Envelope Correlation Coefficients(ECCs), Mean Effective Gains (MEGs) and channel capacity are calculated.Desirable antenna and MIMO performances are evaluated to confirm the suitability of the proposed MIMO antenna system for 5G mobile terminals.展开更多
基金Foundation item:The National Natural Science Foundation of China(No.60496311)
文摘The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input multiple-output (MIMO) system to analyze the ergodic capacity of the GDAS and make conclusions that it is impossible to achieve an analytical expression for the ergodic capacity of the GDAS. Moreover, in order to evaluate the performance of the ergodic capacity of the GDAS conveniently, the analytical lower bound and upper bound of the ergodic capacity of the GDAS are derived by using the results from multivariate statistics and matrix inequalities, under the scenarios of Rayleigh-lognormal fading and equal power allocation scheme at transmitter. Finally, the analytical bounds are verified by comparisons with the numerical results.
基金The National High Technology Research and Development Program of China (863Program) (No.2007AA01Z207,2007AA01Z268)Program for New Century Excellent Talents in UniversityResearch Fund of National Mobile Communications Research Laboratory of Southeast University(No.2008A06)
文摘Due to the complexity of the composite fading channel, a new simplified channel model is proposed to analyze the bit error ratio(BER) performance of the distributed antenna system (DAS). First, instead of the gamma-log-normal distribution, the log-normal distribution is applied to describe the output signal to noise ratio(SNR) after maximal ratio combining (MRC) at the receiver. Then, assuming that the channel state information(CSI) is available to the transmitter, by employing the Gauss-Hermite integral, an approximate analytical expression of the BER is derived for the downlink of the DAS with antenna selective transmission and MRC. Finally, the results of a Monte Carlo simulation show that the analytical results match the simulation results. Therefore, it can be concluded that the proposed approximate channel model is effective and accurate, and the derived analytical expression can be used to evaluate the real system performance.
文摘This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.
基金National Natural Science Foundation of China,Open Research Fund of National Mobile Communications Research Laboratory of Southeast University,Qing Lan Project of Jiangsu Province,the Fundamental Research Funds for the Central Universities,Research Founding of Graduate Innovation Center in NUAA,Innovation Fund of College of Electronic and Information Engineering of NUAA
文摘Discrete-rate adaptive modulation (AM) scheme for distributed antenna system (DAS) with imperfect channel state information (CSI) is developed, and the corresponding performance is investigated in composite Rayleigh channel. Subject to target bit error rate (BER) constraint, an improved fixed switching threshold (FST) for the AM scheme is presented by means of tightly-approximate BER expression, and it can avoid the performance loss fxom conventional FST. Based on the imperfect CSI, the variable switching threshold (VST) is derived by utilizing the maximum a posteriori method. This VST includes the improved FST as a special case, and may lower the impact of estimation error on the performance. By the switching thresholds, the spectrum efficiency (SE) and average BER of the system are respectively derived, and resulting closed- form expressions are attained. With these expressions, the system performance can be effectively evaluated. Simulation results show that the derived theoretical SE and BER can match the simulations well. Moreover, the AM with the presented FST has higher SE than that with the conventional one, and the AM with VST can tolerate the large estimation error while maintaining the target BER.
基金ACKNOWLEDGEMENTS This work is supported by Natural Science Foundation of China (No. 61340035) and Guangzhou science and technology plan projects (2014-132000764).
文摘Most of studies on Distributed Antenna System(DAS) focus on maximizing the sum capacity and perfect channel state information at transmitter(CSIT).However,CSI is inevitable imperfect in practical wireless networks.Based on the sources of error,there are two models.One assumes error lies in a bounded region,the other assumes random error.Accordingly,we propose two joint antenna selection(AS) and robustbeamforming schemes aiming to minimize the total transmit power at antenna nodes subject to quality of service(QoS) guarantee for all the mobile users(MUs) in multicell DAS.This problem is mathematically intractable.For the bounded error model,we cast it into a semidefinite program(SDP) using semidefinite relaxation(SDR) and S-procedure.For the second,we first design outage constrained robust beamforming and then formulate it as an SDP based on the Bernstein-type inequality,which we generalize it to the multi-cell DAS.Simulation results verify the effectiveness of the proposed methods.
基金supported in part by National 973 Program(2012CB315705)NSFC Program(61302086,61271042,61107058, 61302016,and 61335002)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20130005120007)Program for New Century Excellent Talents in University(NCET-13-0682)Fundamental Research Funds for the Central Universities
文摘The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.
基金supported by the Doctoral Fund of Ministry of Education of China(No.20093218120021)the Fundamental Research Funds for the Central Universities+1 种基金the Research Founding of Graduate Innovation Center in NUAA(Nos.kfjj201429,kfjj20150410)the PARD of Jiangsu Higher Education Institutions,Qing Lan Project of Jiangsu
文摘Considering that perfect channel state information(CSI)is hard to obtain in practice,the capacity of downlink distributed antennas system(DAS)with imperfect CSI is analyzed over Rayleigh fading channel.Based on the performance analysis,using the probability density function and numerical calculation,an accurate closedform expression of ergodic capacity of downlink DAS under imperfect CSI is derived.It includes the one under perfect CSI as a special case.This theoretical expression can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI due to its accuracy.Simulation results indicate that the theoretical analysis agrees well with the corresponding simulation,and the capacity can be increased effectively by decreasing the estimation error and/or path loss.
文摘This paper investigates the downlink capacity distribution and the outage probability of the interested area of maximum ratio transmission-selection combining(MRT-SC) scheme in the distributed antenna system(DAS).Composite fading channels are assumed,which include path loss,lognormal shadowing and multi-path Rayleigh fading.Analytical approximations of the capacity's cumulative distribution function(CDF),the outage capacity,the mean capacity,and the outage probability of the interested area are derived by means of moment generation function(MGF) and Gauss-Hermite series expansion based approaches.The influence of antenna number,path loss exponent,and shadowing standard deviation on the capacity distribution are investigated.The simulation results agree with the analytical approximations well,and thus the analytical approximations are able to substitute the time-intensive Monte Carlo simulation for further investigation.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2006AA01Z272 and 2009AA02Z412)the Beijing Municipal Science & Technology Commission(Grant No.D08080100620802)
文摘This paper focuses on analyzing the ergodic capacity performance of limited feedback (LFB) beamforming in multi-user distributed antenna system (DAS). In such a system, multi-user interference (MUI) is inevitably due to the channel uncertainties caused by quantization error. Considering this, we propose a parameter named effective ergodic capacity rate (EECR), which denotes the capacity offset between finite rate feedback and perfect channel state information (CSI). The simulation results show that the derived approximated EECR is very tight to actual EECR. Based on the approximated EECR, an adaptive minimum bit feedback scheme is proposed, which can effectively reduce the overhead of feedback channel and the complexity of the system. The simulation results verify the effectiveness of the proposed scheme.
基金supported by the National Science and Technology Major Project: the Next Generation Wireless Mobile Communication Network (2009ZX03004-001)
文摘To minimize the outage probability of the cell (OPC) in downlink distributed antenna systems with selection transmission, a complex-encoding genetic algorithm (GA) is proposed to find the optimal locations of the antenna elements (AEs). First, the outage probability at a fixed location in the cell is investigated. Next, an analytical expression of the OPC is derived, which is a function of the AE locations. Then the OPC is used as the objective function of the antenna placement optimization problem, and the complex- encoding GA is used to find the optimal AE locations in the cell. Numerical results show that the optimal AE locations are symmetric about the cell center, and the outage probability contours are also given with the optimal antenna placement. The algorithm has a good convergence and can also be used to determine the number of AEs which should be installed in order to satisfy the certain OPC value. Lastly, verification of the OPC's analytical expression is carried out by Monte Carlo simulations. The OPC with optimal AE locations is about 10% lower than the values with completely random located AEs.
基金Supported by the State Environmental Protection Commonweal Industry Research Special of China (No.200909106)
文摘The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems. Based on the Finite Difference Time Domain (FDTD) algorithm, using the mobile phone shielding device as the multiple antenna systems example, the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method. The effectivity of prediction method is verified by comparing the prediciton results with the measurment results. About 80% of the error can be controlled less than dB. The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.
文摘In this paper, the asymptotic sum rate of a multi-user distributed antenna system (DAS) is analyzed. To mitigate inter-user interference, minimum mean squared error (MMSE) receivers are utilized to cooperatively process received signals in the uplink. It shows that inter-user interference is efficiently mitigated and the uplink sum rate of a multi-user DAS is greatly improved by adopting MMSE receivers. For very large number of users and remote antennas, the asymptotic uplink sum rate of MMSE receivers is derived by using virtue of the random matrix theory, which can be The approximation is verified to be quite accurate by Monte Carlo simply calculated in an iterative way simulations.
基金Project supported by the IRPA Secretariat, Ministry of Science,Technology and Environment of Malaysia (No. 04-02-02-0029) andthe Zamalah Scheme
文摘A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.
基金partially supported by National Natural Science Foundation of China (61571225)Research Founding of Graduate Innovation Center in NUAA (kfjj20150410)+4 种基金the Fundamental Research Funds for the Central Universities (NS2015046,NS2016044)Shenzhen Strategic Emerging Industry Development Funds (JSGG20150331160845693)Qing Lan Project of JiangsuSix Talent Peaks Project in Jiangsu (DZXX-007)Open Research Fund of National Mobile Communications Research Laboratory of Southeast University (2012D17)
文摘The energy efficiency(EE) of distributed antenna system with quality of service(Qo S) requirement is investigated over composite Rayleigh fading channel,where the shadow fading,path loss and Rayleigh fading are all considered. Our aim is to maximize the EE which is defined as the ratio of the transmission rate to the total consumed power subject to the maximum transmit power of each remote antenna constraint and Qo S(target BER) requirement. According to the definition of EE and using the upper bound of average EE,the optimized objective function is provided. Based on this,utilizing Karush-KuhnTucker conditions and numerical calculation,a suboptimal energy efficient power allocation(PA) scheme is developed,and the closedform expression of PA coefficients is derived. The scheme may obtain the EE performance close to the existing optimal scheme. Moreover,it has relatively lower complexity than the existing scheme because only the statistic channel information and less iteration are required. Simulation results show the presented scheme is valid and can meet the target BER requirement,and the EE can be increased as target BER requirement decreases.
文摘The mathematical model of electromagnetic compatibility and the distribution of aircraft antenna system have been investigated. The solutions of the antenna gain and electromagnetic interference margin in the regions of low frequency, resonance and high frequency were discussed. By using the basic analytical method of the EMI margin the distributed antenna system can be determined. The main program flow chart of distributed antenna design were given, and illustrated with examples of the microstrip antennas.
基金supported by National Basic Research Program of China (973 program, MOST2011CB811401)the National Natural Science Foundation of China (Grant Nos. 11221063, 10778605, 11003028, 11203042, and U1231205)the National Major Scientific Equipment Research and Design project (ZDYZ2009-3)
文摘The Chinese Spectral Radio Heliograph(CSRH) is an advanced aperture synthesis solar radio heliograph, independently developed by National Astronomical Observatories, Chinese Academy of Sciences. It consists of 100 reflector antennas,which are grouped into two antenna arrays(CSRH-I and CSRH-II) for low and high frequency bands respectively. The frequency band of CSRH-I is 0.4–2 GHz and that for CSRH-II is 2–15 GHz. In the antenna and feed system, CSRH uses eleven feeds to receive signals coming from the Sun. The radiation pattern has a lower side lobe and the back lobe of the feed is well illuminated. The characteristics of gain G and antenna noise temperature T affect the quality of solar radio imaging. For CSRH, the measured G is larger than 60 d Bi and T is less than 120 K. After CSRH-I was established, we successfully captured a solar radio burst between 1.2–1.6 GHz on 2010 November12 using this instrument and this event was confirmed through observations with the Solar Broadband Radio Spectrometer at 2.84 GHz and the Geostationary Operational Environmental Satellite. In addition, an image obtained from CSRH-I clearly revealed the profile of the solar radio burst. The other observational work involved the imaging the Fengyun-2E geosynchronous satellite which is assumed to be a point source.Results indicate that the data processing method applied in this study for deleting errors in a noisy image could be used for processing images from other sources.
基金partly supported by the National Natural Science Foundation of China(No.61871433,61828103,61201255)the Science and Technology Program of Guangzhou(201707010490)+1 种基金the Natural Science Foundation of Guangdong Province(2018A0303130141)the Innovation Project of Education Department of Guangdong Province
文摘Smart communities are an emerging communication means in which humans and smart devices will interact with each other and deliver ubiquitous services by exploiting social intelligence.Distributed antenna system(DAS),one of the key technologies to realize smart decisions in smart communities,can settle network smart coverage problem and improve system energy/spectrum efficiency significantly.Considering that energy consumption is an important element for community communications,in this paper,we survey the existing green DAS research for smart communities.In particular,our investigation covers antenna distribution,system capacity,spectrum efficiency,energy efficiency,and green access issues.Moreover,we analyze the existing application opportunities and challenges.This survey contributes to better understanding of the challenges and approaches for green DAS in existing smart community networks and further shed novel light on some future research directions.
基金supported by the High Technology Research and Development Project of China (No. 2009AA110302)the National Natural Science Foundation of China (No. 60830001)+2 种基金the State Key Laboratory of Rail Traffi c Control and Safety (No. RCS2008ZZ006, No.RCS2008ZZ007)the program for Changjiang Scholars and Innovative Research Team in University (No. IRT0949)the innovation funding for outstanding PhD candidates of Beijing Jiaotong University (No. 141059522)
文摘This paper presents an outage analysis of distributed antennas system(DAS) suffering from shadowed Nakagami-m fading environment where the desired signal also suffers from co-channel interference. The desired signal and interfering signal are subjected to path loss,multipath and shadowing fading. Based on Wilkinson's method,the signal to interference ratio(SIR) probability density function(PDF) of fixed DAS is obtained. Some numerical results of outage probability with different parameters are analyzed. The analysis results can provide sufficient precision for evaluating the outage performance of DAS.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/25/42),Received by Fahd N.Al-Wesabi.www.kku.edu.sa.
文摘In recent years,there has been an increasing demand to improve cellular communication services in several aspects.The aspect that received the most attention is improving the quality of coverage through using smart antennas which consist of array antennas.this paper investigates the main characteristics and design of the three types of array antennas of the base station for better coverage through simulation(MATLAB)which provides field and strength patterns measured in polar and rectangular coordinates for a variety of conditions including broadsides,ordinary End-fire,and increasing directivity End-fire which is typically used in smart antennas.The method of analysis was applied to twenty experiments of process design to each antenna type separately,so sixty results were obtained from the radiation pattern indicating the parameters for each radiation pattern.Moreover,nineteen design experiments were described in this section.It is hoped that the results obtained from this study will help engineers solve coverage problems as well as improve the quality of cellular communication networks.
文摘A compact self-isolated Multi Input Multi Output (MIMO) antennaarray is presented for 5G mobile phone devices. The proposed antenna systemis operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antennaelements placed along two side edges of a mobile device, which meets the currenttrend requirements of full-screen smartphone devices. Each antenna element isdivided into two parts, a front part and back part. The front part consists of anI-shaped feeding line and a modified Hilbert fractal monopole antenna, whereasthe back part is an L-shaped element shorted to the system ground by a0.5 mm short stub. A desirable compactness can be obtained by utilizing the Hilbert space-filling property where the antenna element’s overall planar size printedon the side-edge frame is just (9.57 mm × 5.99 mm). The proposed MIMO antenna system has been simulated, analyzed, fabricated and tested. Based on the selfisolated property, good isolation (better than 15 dB) is attained without employingadditional decoupling elements and/or isolation techniques, which increases system complexity and reduces the antenna efficiency. The scattering parameters,antenna efficiencies, antenna gains, and antenna radiation characteristics areinvestigated to assess the proposed antenna performance. For evaluating the proposed antenna array system performance, the Envelope Correlation Coefficients(ECCs), Mean Effective Gains (MEGs) and channel capacity are calculated.Desirable antenna and MIMO performances are evaluated to confirm the suitability of the proposed MIMO antenna system for 5G mobile terminals.