Sustained dysfunction of the intestinal barrier caused by early weaning is a major factor that induces postweaning diarrhea in weaned piglets.In both healthy and diseased states,the intestinal barrier is regulated by ...Sustained dysfunction of the intestinal barrier caused by early weaning is a major factor that induces postweaning diarrhea in weaned piglets.In both healthy and diseased states,the intestinal barrier is regulated by goblet cells.Alterations in the characteristics of goblet cells are linked to intestinal barrier dysfunction and inflammatory conditions during pathogenic infections.In this review,we summarize the current understanding of the mechanisms of the unfolded protein response(UPR)and anterior gradient2(AGR2)in maintaining intestinal barrier function and how modifications to these systems affect mucus barrier characteristics and goblet cell dysregulation.We highlight a novel mechanism underlying the UPR-AGR2 pathway,which affects goblet cell differentiation and maturation and the synthesis and secretion of mucin by regulating epidermal growth factor receptor and mucin 2.This study provides a theoretical basis and new insights into the regulation of intestinal health in weaned piglets.展开更多
This study examined the expression of the anterior gradient-2 (AGR2) protein and Muc5ac protein in the lung tissues of asthmatic mice and the effect of dexamethasone, with an at- tempt to explore the role of AGR2 in...This study examined the expression of the anterior gradient-2 (AGR2) protein and Muc5ac protein in the lung tissues of asthmatic mice and the effect of dexamethasone, with an at- tempt to explore the role of AGR2 in the over-secretion of mucus in the airway. Eighteen BALB/c mice were divided into asthma group, control group and dexamethasone group. In dexamethasone group, dexamethasone was intraperitoneally administered. Expression of AGR2 protein and Muc5ac protein in the murine lung tissues was immunohistochemically detected. IL-13 level was determined in the bronchoalveolar lavage fluid (BALF) by ELISA. The results exhibited that the expression of AGR2 protein in asthma group (0.522±0.041) was significantly higher than that in normal controls (0.361±0.047) (P〈0.01) and bore a positive linear relationship to the expression of Muc5ac protein (r=0.873, P〈0.05) and IL-13 level (r=0.828, P〈0.05). Expression of AGR2 protein in the dexa- methasone group (0.456±0.049) was significantly lower than that in the asthma group. It was concluded that: (1) the expression of AGR2 protein was significantly higher in asthmatic mice as com- pared with their normal counterparts; (2) the expression was obviously related to the expression of Muc5ac protein and IL-13; (3) dexamethasone could down-regulate the expression of AGR2 protein. Our findings suggested that AGR2 might be involved in the over-secretion of mucus in the airway in asthma.展开更多
基金supported by the National Natural Science Foundation of China(32172816)the National Natural Science of Anhui Province(2208085MC77)+1 种基金Excellent Research Innovation Team in Universities in Anhui Province(2022AH010088)the College Student Innovation and Entrepreneurship Project(202110879058).
文摘Sustained dysfunction of the intestinal barrier caused by early weaning is a major factor that induces postweaning diarrhea in weaned piglets.In both healthy and diseased states,the intestinal barrier is regulated by goblet cells.Alterations in the characteristics of goblet cells are linked to intestinal barrier dysfunction and inflammatory conditions during pathogenic infections.In this review,we summarize the current understanding of the mechanisms of the unfolded protein response(UPR)and anterior gradient2(AGR2)in maintaining intestinal barrier function and how modifications to these systems affect mucus barrier characteristics and goblet cell dysregulation.We highlight a novel mechanism underlying the UPR-AGR2 pathway,which affects goblet cell differentiation and maturation and the synthesis and secretion of mucin by regulating epidermal growth factor receptor and mucin 2.This study provides a theoretical basis and new insights into the regulation of intestinal health in weaned piglets.
基金supported by the National Natural Science Foundation of China (No. 30900648)
文摘This study examined the expression of the anterior gradient-2 (AGR2) protein and Muc5ac protein in the lung tissues of asthmatic mice and the effect of dexamethasone, with an at- tempt to explore the role of AGR2 in the over-secretion of mucus in the airway. Eighteen BALB/c mice were divided into asthma group, control group and dexamethasone group. In dexamethasone group, dexamethasone was intraperitoneally administered. Expression of AGR2 protein and Muc5ac protein in the murine lung tissues was immunohistochemically detected. IL-13 level was determined in the bronchoalveolar lavage fluid (BALF) by ELISA. The results exhibited that the expression of AGR2 protein in asthma group (0.522±0.041) was significantly higher than that in normal controls (0.361±0.047) (P〈0.01) and bore a positive linear relationship to the expression of Muc5ac protein (r=0.873, P〈0.05) and IL-13 level (r=0.828, P〈0.05). Expression of AGR2 protein in the dexa- methasone group (0.456±0.049) was significantly lower than that in the asthma group. It was concluded that: (1) the expression of AGR2 protein was significantly higher in asthmatic mice as com- pared with their normal counterparts; (2) the expression was obviously related to the expression of Muc5ac protein and IL-13; (3) dexamethasone could down-regulate the expression of AGR2 protein. Our findings suggested that AGR2 might be involved in the over-secretion of mucus in the airway in asthma.