Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may...Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may provide important guidance for local government policy and grassland management.Using two of the most reliable satellite NDVI products(MODIS NDVI and SPOT NDVI),we evaluated the dynamic of grasslands in the Zhegucuo valley on the southern Tibetan Plateau from 2000 to 2020,and analyzed its driving factors and relative influences of climate change and anthropogenic activities.Here,the key indicators of climate change were assumed to be precipitation and temperature.The main results were:(1)the grassland NDVI in Zhegucuo valley did not reflect a significant temporal change during the last 21 years.The variation of precipitation during the early growing season(GSP)resembled that of NDVI,and the GSP was positively correlated with NDVI.At the pixel level,the partial correlation analysis showed that 37.79%of the pixels depicted a positive relationship between GSP and NDVI,while 11.32%of the pixels showed a negative relationship between temperature during the early growing season(GST)and NDVI.(2)In view of the spatial distribution,the areas mainly controlled by GSP were generally distributed in the southern part,while those affected by GST stood in the eastern part,mainly around the Zhegucuo lake where most population in Cuomei County settled down.(3)Decreasing NDVI trends were mainly occurred in alpine steppe at lower elevations rather than alpine meadow at higher elevations.(4)The residual trend(RESTREND)analysis further indicated that the anthropogenic activities played a more pivotal role in regulating the annual changes of NDVI rather than climate factors in this area.Future studies should pay more attention on climate extremes rather than the simple temporal trends.Also,the influence of human activities on alpine grassland needs to be accessed and fully considered in future sustainable management.展开更多
As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is...As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.展开更多
Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temper...Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. .展开更多
Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined p...Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.展开更多
The toxic heavy metal mercury(Hg)has significantly enhanced the global Hg cycle influenced by human activities over the last century.In this study,we presented a high-resolution Hg deposition history between∼1780 and...The toxic heavy metal mercury(Hg)has significantly enhanced the global Hg cycle influenced by human activities over the last century.In this study,we presented a high-resolution Hg deposition history between∼1780 and 2015 AD in a sediment core from Xincun Lagoon,located in the southeastern Hainan Island,South China,and analyzed it in conjunction with geochemical elements,grain-size distribution,organic matter,and HYSPLIT backward trajectory simulation.The objective was to investigate the influencing factors affecting historical Hg deposition in relatively remote regions and assess the extent of the effects of natural background and human activities.The results showed that the Hg in the sediment was deposited primarily through atmospheric deposition,which was closely related to regional and even global human activities.Anthropogenic Hg contamination increased gradually from the 1830s to 1850s,possibly due to Hg emissions from Opium Wars I and II occurring in southeastern China.High broad peaks of anthropogenic Hg were observed during the 1910s to 1950s and in the 1980s,likely associated with the two world wars and modern Chinese wars.In addition,a further sharp increase in anthropogenic Hg from the mid-1970s to the present occurred,likely originating from the intense industrial activities in China triggered by the reform and opening-up policy of China in 1978 and some countries in Southeast Asia.展开更多
The Garhwal Himalaya is among the major repositories of immensely valuable wild edible plants and provides food security to the local population.Among the valuable plant species that grow in this region,Paeonia emodi(...The Garhwal Himalaya is among the major repositories of immensely valuable wild edible plants and provides food security to the local population.Among the valuable plant species that grow in this region,Paeonia emodi(family Paeoniaceae)is an important wild edible species that found in temperate regions with an altitude range between 1800 and 2800 m.The species is facing a severe threat to its sustainability due to overharvesting,habitat disturbances,and a lack of effort regarding conservation.For the first time,this study investigated anthropogenic pressure,population decline perceptions in the natural habitat,and vulnerability assessment of P.emodi under selected study sites(n=23 villages).A semi structured questionnaire was used to interview approximately 45%of the local inhabitants,including herbal practitioners(Vaidhyas or Dais)of each village.On the basis of demographic characteristics,the perceptions and responses of 464 local people were documented regarding potential causes of deterioration and feasible options for sustainable utilization.Using the weight survey method,we estimated the actual amount of collection based on personal interaction and direct observation.In order to determine the threats status,a rapid vulnerability assessment(RVA)was performed and were used based on the current exploitation and usage.The present study revealed that leaf(100%)was the most frequently harvested part,followed by stem(95.65%),seed(26.09%),root(21.74%)and flower(13.04%).The village Triyuginarayan and Pothivasa recorded the highest collection scores while the purpose of the collection was mostly edible(100%),medicinal(100%),and least commercial(8.70%).According to the literature review and the present survey,the RVA(total=21)is categorized as category II(intermediate side of the RVA index),indicating a degree of vulnerability.The study revealed that P.emodi faces extinction in the Garhwal Himalayas.Growing this species through agro-production techniques may alleviate the pressure on the existing population as a result of the availability of raw materials for commercial and household uses.These findings will provide an effective framework for conservation and management decisions and plans.展开更多
Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water...Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water. Healthy aquatic ecosystems are supported by physicochemical properties and biological diversity. This study evaluated the anthropogenic impacts on aquatic biodiversity, especially plankton, fish, and macrobenthos, as well as the water quality of the Juru River in the Penang area. Aquatic biodiversity and river water parameters were collected from ten sampling stations along the Juru River. Seven variables were used to assess the physicochemical environment: pH, temperature, total suspended solids (TSS), salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand. At each sampling station, the total number of plankton, fish, and macrobenthic taxa were counted and analyzed. The relationships between the physicochemical parameters and aquatic biodiversity were investigated with biotypological analysis, principal component analysis, hierarchical cluster analysis, and linear regression analysis. These analyses showed that the richness and diversity indices were generally influenced by salinity, temperature, TSS, BOD, and pH. The data obtained in this study supported the bioindicator concept. The findings, as they related to scientifically informed conservation, could serve as a model for Juru River management, as well as for river management throughout Malaysia and other tropical Asian countries.展开更多
Marine spatial planning(MSP)is designed to divide the sea area into different types of functional zones,to implement corresponding development activities.However,the long-term impacts of anthropogenic activities assoc...Marine spatial planning(MSP)is designed to divide the sea area into different types of functional zones,to implement corresponding development activities.However,the long-term impacts of anthropogenic activities associated with MSP practice on the marine microbial biosphere are still unclear.Yalu River Estuary,a coastal region in northeast of China,has been divided into fishery&agricultural(F&A)zone,shipping&port(S&P)zone and marine protected area(MPA)zone by a local MSP guideline that has been run for decades.To examine the effects of long-term executed MSP,benthic bacterial communities from different MSP zones were obtained and compared in this study.The results revealed significant differences in the bacterial community structure and predict functions among different zones.Bacterial genera enriched in different zones were identified,including SBR1031 in MPA,Woeseia and Sva0996 in S&P,and Halioglobus in F&A.In addition,correlations between some bacterial genera and sediment pollutants were uncovered.Furthermore,bacteria related to sulphide production were more abundant in the F&A zone,which was according to the accumulation of sulphides in this area.Moreover,bacteria associated with chemoheterotrophy and fermentation were more predominant in the S&P zone,consistent with high levels of organic matter and petroleum caused by shipping.Our findings indicated benthic bacterial communities could bring to light the anthropogenic activity footprints by different activities induced by long-term MSP practice.展开更多
Landslides in the Himalayan region are primarily controlled by natural parameters,including rainfall,seismic activity,and anthropogenic parameters,such as the construction of large-scale projects like road development...Landslides in the Himalayan region are primarily controlled by natural parameters,including rainfall,seismic activity,and anthropogenic parameters,such as the construction of large-scale projects like road development,tunneling and hydroelectric power projects and climate change.The parameters which are more crucial among these are a matter of scientific study and analysis.This research,taking Solan district,Himachal Pradesh,India,as the study area,aims to assess the impact of anthropogenic activities on landslide susceptibility at a regional scale.Landslide distribution was characterized into two groups,namely Rainfall-Induced Landslide(RIL)and Human-Induced Landslide(HIL)based on triggering factors.Multiple data such as slope angle,aspect,profile curvature,distance to drainage,distance to lineament,lithology,distance to road,normalized difference vegetation index(NDVI)and land use land cover(LULC)have been considered for delineating the landslide susceptibility zonation(LSZ)map.The effect of anthropogenic activities on landslide occurrences has been examined through the distribution of landslides along national highways and land use land cover changes(LULCC).Two sets of LSZ maps with a LULC of time interval covering five years(2017&2021)were prepared to compare the temporal progression of LULC and landslide susceptibility during the five years.The results indicated the significant impact of anthropogenic activities on the landslide susceptibility.LSZ map of the year 2021 shows that 23%area falls into high and very high susceptible classes and 48%area falls into very low and low susceptibility classes.Compared to LSZ map of 2017,high and very high susceptible classes have been increased by 15%,whereas very low and low susceptible classes have been reduced by 7%.The present case study will help to understand the potential driving parameters responsible for HIL and also suggest the inclusion of LULC in landslide susceptibility analysis.The study will demonstrate new opportunities for research that could help decision-makers prepare for future disasters,both in the Indian Himalayan region and other areas.展开更多
As ecologically fragile areas,coastal zones are affected by both anthropogenic activities and climate change.However,the impacts of these factors on large nearshore mammals,such as Indo-Pacific humpback dolphins(IPHDs...As ecologically fragile areas,coastal zones are affected by both anthropogenic activities and climate change.However,the impacts of these factors on large nearshore mammals,such as Indo-Pacific humpback dolphins(IPHDs,Sousa chinensis),are poorly understood.Here,modeling revealed that the suitable habitats of IPHDs are affected mainly by the sea surface temperature(SST),and the habitat suitability decreases as the distance to the nearest coastline increases.In addition,anthropogenic activities involving demersal fishing,contamination and shipping have narrowed IPHD habitats and reduced the habitat suitability.We found that climate change will further narrow suitable habitats located farther than 7 km from coastlines and trigger habitat losses in the eastern Taiwan Strait by 2090-2100 under the Representative Concentration Pathway(RCP)8.5 scenario.The projected decreases in habitat suitability and area emphasize the urgency of establishing connected marine protected areas(MPAs)while considering climate change,intergovernmental cooperation,and public involvement.展开更多
Anthropogenic aluminum cycle in China was analyzed by the aluminum flow diagram based on the life cycle of aluminum products. The whole anthropogenic aluminum cycle consists of four stages: alumina and aluminum produ...Anthropogenic aluminum cycle in China was analyzed by the aluminum flow diagram based on the life cycle of aluminum products. The whole anthropogenic aluminum cycle consists of four stages: alumina and aluminum production, fabrication and manufacture, use and reclamation. Based on the investigation on the 2003-2007 aluminum cycles in China, a number of changes can be found. For instance, resources self-support ratio (RSR) in alumina production dropped from 95.42%to 55.50%, while RSR in the aluminum production increased from 52.45%to 79.25%. However, RSR in the Chinese aluminum industry leveled off at 50%in the period of 2003-2007. The respective use ratios of domestic and imported aluminum scrap in the aluminum industry of 2007 were 5.38% and 9.40%. In contrast, both the net imported Al-containing resources and the lost quantity of Al-containing materials in aluminum cycle increased during the same period, as well as the net increased quantity of Al-containing materials in social stock and recycled Al-scrap. Proposals for promoting aluminum cycle were put forward. The import/export policy and reducing the loss of Al-containing materials for the aluminum industry in China in the future were discussed.展开更多
Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthro...Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.展开更多
Knowledge of the changes in a material’s function, form, and location during the transfer and transformation of materials to generate human services will improve our understanding of how humanity interacts with the e...Knowledge of the changes in a material’s function, form, and location during the transfer and transformation of materials to generate human services will improve our understanding of how humanity interacts with the environment and of how services are formed by human activities. We compared lead’s anthropogenic and biogeochemical cycles and found that the services, pathways, and changes in form requiring the most attention. We traced lead through its life cycle and identified the changes in its functions, forms, and locations by examining technology and engineering information. Lead ore and scrap were the two main anthropogenic sources of lead. When lead provides human services, its main functions included the storage and delivery of electricity, anti-corrosion treatments, and radiation protection; the main forms of lead in these products were Pb, PbO2 and PbSO4, and the main location changed from lithosphere in central China to regions in eastern China.展开更多
Surface water bodies are progressively subjected to stress as a result of anthropogenic activities. This study assessed and examined the impact of human activities on spatial variation in the water quality of 19 river...Surface water bodies are progressively subjected to stress as a result of anthropogenic activities. This study assessed and examined the impact of human activities on spatial variation in the water quality of 19 rivers in the Taihu watershed. Concentrations of physicochemical parameters of surface water quality were determined at the mouth of each river during the period of 2000-2004. Multivariate statistical techniques were applied to identify characteristics of the water quality in the studied rivers. The results showed that rivers strongly influenced by household wastewater have the highest concentrations of nutrients (TN and TP). Moreover, rivers in the vicinity of a metropolis presented low dissolved oxygen (DO) levels. However, organic-chemical pollution (petroleum and volatile phenolics) was identified with high localization. Two rivers influenced by sewage from industry and ships were distinguished from other rivers with high values of petroleum. The Taige channel, a river located in Changzhou City that is strongly influenced by wastewater from industry, was characterized with an extraordinarily high value of volatile phenolics. Rivers passing through countries, especially through hilly countries were characterized with high DO contents and low nutrient and organic-chemical pollution, suggesting that agriculture puts less pressure on water quality in adjacent rivers. Therefore, more effort should be made in controlling point pollution to restore water quality in rivers adjacent to cities.展开更多
Taihu Lake region is one of the most industrialized areas in China, and the surface water is progressively susceptible to anthropogenic pollution. The physicochemical parameters of surface water quality were determine...Taihu Lake region is one of the most industrialized areas in China, and the surface water is progressively susceptible to anthropogenic pollution. The physicochemical parameters of surface water quality were determined at 20 sampling sites in Taihu Lake region, China in spring, summer, autumn, and winter seasons of 2005-2006 to assess the effect of human activities on the surface water quality. Principal component analysis (PCA) and cluster analysis (CA) were used to identify characteristics of the water quality in the studied water bodies. PCA extracted the first three principal components (PCs), explaining 80.84% of the total variance of the raw data. Especially, PC1 (38.91%) was associated with NH 4 -N, total N, soluble reactive phosphorus, and total P. PC2 (22.70%) was characterized by NO 3 -N and temperature. PC3 (19.23%) was mainly associated with pH and dissolved organic carbon. CA showed that streams were influenced by urban residential subsistence and livestock farming contributed significantly to PC1 throughout the year. The streams influenced by farmland runoff contributed most to PC2 in spring and winter compared with other streams. PC3 was affected mainly by aquiculture in spring, rural residential subsistence in summer, and livestock farming in fall and winter seasons. Further analyses showed that farmlands contributed significantly to nitrogen pollution of Taihu Lake, while urban residential subsistence and livestock farming also polluted water quality of Taihu Lake in rainy season. The results would be helpful for the authorities to take sound actions for an effective management of water quality in Taihu Lake region.展开更多
Human activities alter land use patterns and affect landscape sustainability. It is therefore very important to investigate the relationship between land use change and human activities. This study focuses on the dete...Human activities alter land use patterns and affect landscape sustainability. It is therefore very important to investigate the relationship between land use change and human activities. This study focuses on the detection of changing land use patterns in the Yanhe River Basin in northern Loess Plateau of China between 1995 and 2008. Landscape metrics were used to analyze the changing land use patterns and to explore the related anthropogenic driving forces. Results show that:1) Totally, 186 590 ha of croplands were converted into alternate land-use types (equivalent to 61.7% of the original cropland area). The majority of cropland areas were found to be converted into grassland and woodland areas (accounting for 55.9% and 4.9% respectively of the original cropland areas). 2) Both cropland and woodland demonstrated an increasing fragmentation tendency while grasslands showed a decreasing fragmentation tendency. 3) Multiple driving forces of land use change were thought to act together to changes in landscape metrics in the Yanhe River Basin. The anthropogenic driving forces were analyzed from four perspectives:ecological conservation policy, labor force transfer, industrial development, and rural settlement. The policy of the GfG (Grain for Green) project was the main driving factor which expedited the conversion from cropland to woodland and grassland. Industrial development was also found to affect land use change through the direct impact of economic activities such as oil exploration and agricultural production, or through indirect impacts such as the industrial structures readjustment. Labor force transfer from rural to urban areas was found to follow the industrial structure readjustment and further drove land use change from cropland to off-farm land use. Establishment of new tile-roofed houses instead of cave-type dwellings in rural settlements has helped to aggregate the original scattered land-use type of construction.展开更多
We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Ba...We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Based on energy consumption and high-quality land use data,we designed two scenarios to represent no-AHR and current-AHR conditions.By comparing the results of the two numerical experiments,changes of surface air temperature and precipitation due to AHR were quantified and analyzed.We concluded that AHR increases the temperature in these urbanized areas by about 0.5℃-1℃,and this increase is more pronounced in winter than in other seasons.The inclusion of AHR enhances the convergence of water vapor over urbanized areas.Together with the warming of the lower troposphere and the enhancement of ascending motions caused by AHR,the average convective available potential energy in urbanized areas is increased.Rainfall amounts in summer over urbanized areas are likely to increase and regional precipitation patterns to be altered to some extent.展开更多
Using observed daily precipitation data to classify five levels of rainy days by strength in South China (SC),with an emphasis on the Pearl River Delta (PRD) region,the spatiotemporal variation of different grades...Using observed daily precipitation data to classify five levels of rainy days by strength in South China (SC),with an emphasis on the Pearl River Delta (PRD) region,the spatiotemporal variation of different grades of precipitation during the period 1960-2010 was analyzed and the possible link with anthropogenic aerosols examined.Statistical analysis showed that drizzle and small precipitation has significantly decreased,whereas medium to heavy precipitation has increased slightly over the past 50 years (although not statistically significant).Further data analysis suggested that the decline in drizzle and small precipitation probably has a strong link to increased concentrations of anthropogenic aerosols produced by large-scale human activities related to the rapid socioeconomic development of the PRD region.These aerosols may also have led to the obvious decreasing trend in horizontal visibility and sunshine duration in SC,which is statistically significant according to the t-test.展开更多
A basin-wide ocean general circulation model (OGCM) of the Pacific Ocean is employed to estimate the uptake and storage of anthropogenic CO2 using two different simulation approaches. The simulation (named BIO) ma...A basin-wide ocean general circulation model (OGCM) of the Pacific Ocean is employed to estimate the uptake and storage of anthropogenic CO2 using two different simulation approaches. The simulation (named BIO) makes use of a carbon model with biological processes and full thermodynamic equations to calculate surface water partial pressure of CO2, whereas the other simulation (named PTB) makes use of a perturbation approach to calculate surface water partial pressure of anthropogenic CO2. The results from the two simulations agree well with the estimates based on observation data in most important aspects of the vertical distribution as well as the total inventory of anthropogenic carbon. The storage of anthropogenic carbon from BIO is closer to the observation-based estimate than that from PTB. The Revelle factor in 1994 obtained in BIO is generally larger than that obtained in PTB in the whole Pacific, except for the subtropical South Pacific. This, to large extent, leads to the difference in the surface anthropogenic CO2 concentration between the two runs. The relative difference in the annual uptake between the two runs is almost constant during the integration processes after 1850. This is probably not caused by dissolved inorganic carbon (DIC), but rather by a factor independent of time. In both runs, the rate of change in anthropogenic CO2 fluxes with time is consistent with the rate of change in the growth rate of atmospheric partial pressure of CO2.展开更多
A global ocean general circulation model (L30T63) is employed to study the uptake and distribution of anthropogenic CO2 in the ocean. A subgrid-scale mixing scheme called GM90 is used in the model. There are two mai...A global ocean general circulation model (L30T63) is employed to study the uptake and distribution of anthropogenic CO2 in the ocean. A subgrid-scale mixing scheme called GM90 is used in the model. There are two main GM90 parameters including isopycnal diffusivity and skew (thickness) diffusivity. Sensitivities of the ocean circulation and the redistribution of dissolved anthropogenic CO2 to these two parameters are examined. Two runs estimate the global oceanic anthropogenic CO2 uptake to be 1.64 and 1.73 Pg C yr^-1 for the 1990s, and that the global ocean contained 86.8 and 92.7 Pg C of anthropogenic CO2 at the end of 1994, respectively. Both the total inventory and uptake from our model are smaller than the data-based estimates. In this presentation, the vertical distributions of anthropogenic CO2 at three meridional sections are discussed and compared with the available data-based estimates. The inventory in the individual basins is also calculated. Use of large isopycnal diffusivity can generally improve the simulated results, including the exchange flux, the vertical distribution patterns, inventory, storage, etc. In terms of comparison of the vertical distributions and column inventory, we find that the total inventory in the Pacific Ocean obtained from our model is in good agreement with the data-based estimate, but a large difference exists in the Atlantic Ocean, particularly in the South Atlantic. The main reasons are weak vertical mixing and that our model generates small exchange fluxes of anthropogenic CO2 in the Southern Ocean. Improvement in the simulation of the vertical transport and sea ice in the Southern Ocean is important in future work.展开更多
基金funded by the Second Tibetan Plateau Scientific Expedition and Research program(2019QZKK0301)the Natural Science Foundation of Xizang Autonomous Region(XZ202301ZR0027G).
文摘Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may provide important guidance for local government policy and grassland management.Using two of the most reliable satellite NDVI products(MODIS NDVI and SPOT NDVI),we evaluated the dynamic of grasslands in the Zhegucuo valley on the southern Tibetan Plateau from 2000 to 2020,and analyzed its driving factors and relative influences of climate change and anthropogenic activities.Here,the key indicators of climate change were assumed to be precipitation and temperature.The main results were:(1)the grassland NDVI in Zhegucuo valley did not reflect a significant temporal change during the last 21 years.The variation of precipitation during the early growing season(GSP)resembled that of NDVI,and the GSP was positively correlated with NDVI.At the pixel level,the partial correlation analysis showed that 37.79%of the pixels depicted a positive relationship between GSP and NDVI,while 11.32%of the pixels showed a negative relationship between temperature during the early growing season(GST)and NDVI.(2)In view of the spatial distribution,the areas mainly controlled by GSP were generally distributed in the southern part,while those affected by GST stood in the eastern part,mainly around the Zhegucuo lake where most population in Cuomei County settled down.(3)Decreasing NDVI trends were mainly occurred in alpine steppe at lower elevations rather than alpine meadow at higher elevations.(4)The residual trend(RESTREND)analysis further indicated that the anthropogenic activities played a more pivotal role in regulating the annual changes of NDVI rather than climate factors in this area.Future studies should pay more attention on climate extremes rather than the simple temporal trends.Also,the influence of human activities on alpine grassland needs to be accessed and fully considered in future sustainable management.
基金the National Natural Science Foundation of China(32201338)Science Technology Program from the Forestry Administration of Guangdong Province(2021KJCX017)+1 种基金Guangzhou Municipal Science and Technology Bureau Program(2023A04J0086)Shenzhen Key Laboratory of Southern Subtropical Plant Diversity。
文摘As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.
文摘Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. .
文摘Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.
基金Under the auspices of the National Natural Science Foundation of China(No.42071108,41671194)。
文摘The toxic heavy metal mercury(Hg)has significantly enhanced the global Hg cycle influenced by human activities over the last century.In this study,we presented a high-resolution Hg deposition history between∼1780 and 2015 AD in a sediment core from Xincun Lagoon,located in the southeastern Hainan Island,South China,and analyzed it in conjunction with geochemical elements,grain-size distribution,organic matter,and HYSPLIT backward trajectory simulation.The objective was to investigate the influencing factors affecting historical Hg deposition in relatively remote regions and assess the extent of the effects of natural background and human activities.The results showed that the Hg in the sediment was deposited primarily through atmospheric deposition,which was closely related to regional and even global human activities.Anthropogenic Hg contamination increased gradually from the 1830s to 1850s,possibly due to Hg emissions from Opium Wars I and II occurring in southeastern China.High broad peaks of anthropogenic Hg were observed during the 1910s to 1950s and in the 1980s,likely associated with the two world wars and modern Chinese wars.In addition,a further sharp increase in anthropogenic Hg from the mid-1970s to the present occurred,likely originating from the intense industrial activities in China triggered by the reform and opening-up policy of China in 1978 and some countries in Southeast Asia.
文摘The Garhwal Himalaya is among the major repositories of immensely valuable wild edible plants and provides food security to the local population.Among the valuable plant species that grow in this region,Paeonia emodi(family Paeoniaceae)is an important wild edible species that found in temperate regions with an altitude range between 1800 and 2800 m.The species is facing a severe threat to its sustainability due to overharvesting,habitat disturbances,and a lack of effort regarding conservation.For the first time,this study investigated anthropogenic pressure,population decline perceptions in the natural habitat,and vulnerability assessment of P.emodi under selected study sites(n=23 villages).A semi structured questionnaire was used to interview approximately 45%of the local inhabitants,including herbal practitioners(Vaidhyas or Dais)of each village.On the basis of demographic characteristics,the perceptions and responses of 464 local people were documented regarding potential causes of deterioration and feasible options for sustainable utilization.Using the weight survey method,we estimated the actual amount of collection based on personal interaction and direct observation.In order to determine the threats status,a rapid vulnerability assessment(RVA)was performed and were used based on the current exploitation and usage.The present study revealed that leaf(100%)was the most frequently harvested part,followed by stem(95.65%),seed(26.09%),root(21.74%)and flower(13.04%).The village Triyuginarayan and Pothivasa recorded the highest collection scores while the purpose of the collection was mostly edible(100%),medicinal(100%),and least commercial(8.70%).According to the literature review and the present survey,the RVA(total=21)is categorized as category II(intermediate side of the RVA index),indicating a degree of vulnerability.The study revealed that P.emodi faces extinction in the Garhwal Himalayas.Growing this species through agro-production techniques may alleviate the pressure on the existing population as a result of the availability of raw materials for commercial and household uses.These findings will provide an effective framework for conservation and management decisions and plans.
文摘Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water. Healthy aquatic ecosystems are supported by physicochemical properties and biological diversity. This study evaluated the anthropogenic impacts on aquatic biodiversity, especially plankton, fish, and macrobenthos, as well as the water quality of the Juru River in the Penang area. Aquatic biodiversity and river water parameters were collected from ten sampling stations along the Juru River. Seven variables were used to assess the physicochemical environment: pH, temperature, total suspended solids (TSS), salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand. At each sampling station, the total number of plankton, fish, and macrobenthic taxa were counted and analyzed. The relationships between the physicochemical parameters and aquatic biodiversity were investigated with biotypological analysis, principal component analysis, hierarchical cluster analysis, and linear regression analysis. These analyses showed that the richness and diversity indices were generally influenced by salinity, temperature, TSS, BOD, and pH. The data obtained in this study supported the bioindicator concept. The findings, as they related to scientifically informed conservation, could serve as a model for Juru River management, as well as for river management throughout Malaysia and other tropical Asian countries.
基金The National Key Research and Development Program of China under contract No.2020 YFA0607600。
文摘Marine spatial planning(MSP)is designed to divide the sea area into different types of functional zones,to implement corresponding development activities.However,the long-term impacts of anthropogenic activities associated with MSP practice on the marine microbial biosphere are still unclear.Yalu River Estuary,a coastal region in northeast of China,has been divided into fishery&agricultural(F&A)zone,shipping&port(S&P)zone and marine protected area(MPA)zone by a local MSP guideline that has been run for decades.To examine the effects of long-term executed MSP,benthic bacterial communities from different MSP zones were obtained and compared in this study.The results revealed significant differences in the bacterial community structure and predict functions among different zones.Bacterial genera enriched in different zones were identified,including SBR1031 in MPA,Woeseia and Sva0996 in S&P,and Halioglobus in F&A.In addition,correlations between some bacterial genera and sediment pollutants were uncovered.Furthermore,bacteria related to sulphide production were more abundant in the F&A zone,which was according to the accumulation of sulphides in this area.Moreover,bacteria associated with chemoheterotrophy and fermentation were more predominant in the S&P zone,consistent with high levels of organic matter and petroleum caused by shipping.Our findings indicated benthic bacterial communities could bring to light the anthropogenic activity footprints by different activities induced by long-term MSP practice.
文摘Landslides in the Himalayan region are primarily controlled by natural parameters,including rainfall,seismic activity,and anthropogenic parameters,such as the construction of large-scale projects like road development,tunneling and hydroelectric power projects and climate change.The parameters which are more crucial among these are a matter of scientific study and analysis.This research,taking Solan district,Himachal Pradesh,India,as the study area,aims to assess the impact of anthropogenic activities on landslide susceptibility at a regional scale.Landslide distribution was characterized into two groups,namely Rainfall-Induced Landslide(RIL)and Human-Induced Landslide(HIL)based on triggering factors.Multiple data such as slope angle,aspect,profile curvature,distance to drainage,distance to lineament,lithology,distance to road,normalized difference vegetation index(NDVI)and land use land cover(LULC)have been considered for delineating the landslide susceptibility zonation(LSZ)map.The effect of anthropogenic activities on landslide occurrences has been examined through the distribution of landslides along national highways and land use land cover changes(LULCC).Two sets of LSZ maps with a LULC of time interval covering five years(2017&2021)were prepared to compare the temporal progression of LULC and landslide susceptibility during the five years.The results indicated the significant impact of anthropogenic activities on the landslide susceptibility.LSZ map of the year 2021 shows that 23%area falls into high and very high susceptible classes and 48%area falls into very low and low susceptibility classes.Compared to LSZ map of 2017,high and very high susceptible classes have been increased by 15%,whereas very low and low susceptible classes have been reduced by 7%.The present case study will help to understand the potential driving parameters responsible for HIL and also suggest the inclusion of LULC in landslide susceptibility analysis.The study will demonstrate new opportunities for research that could help decision-makers prepare for future disasters,both in the Indian Himalayan region and other areas.
基金This work was supported by the National Natural Science Founda-tion of China(NSFC)(Grant No.41901349)Marine Economy Develop-ment Foundation of Guangdong Province(Grant No.GDNRC[2022]21)+1 种基金Basic Scientific Research Program of National Nonprofit Research Insti-tutes(Grant No.ZX2022QT025)the Startup Foundation for Tal-ented Scholars in South China Normal University(Grant No.8S0472).
文摘As ecologically fragile areas,coastal zones are affected by both anthropogenic activities and climate change.However,the impacts of these factors on large nearshore mammals,such as Indo-Pacific humpback dolphins(IPHDs,Sousa chinensis),are poorly understood.Here,modeling revealed that the suitable habitats of IPHDs are affected mainly by the sea surface temperature(SST),and the habitat suitability decreases as the distance to the nearest coastline increases.In addition,anthropogenic activities involving demersal fishing,contamination and shipping have narrowed IPHD habitats and reduced the habitat suitability.We found that climate change will further narrow suitable habitats located farther than 7 km from coastlines and trigger habitat losses in the eastern Taiwan Strait by 2090-2100 under the Representative Concentration Pathway(RCP)8.5 scenario.The projected decreases in habitat suitability and area emphasize the urgency of establishing connected marine protected areas(MPAs)while considering climate change,intergovernmental cooperation,and public involvement.
基金Projects (71003018,71373003) supported by the National Natural Science Foundation of ChinaProjects (N110402003,N120302004) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (13YJCZH172) supported by the Ministry of Education of China of Humanities and Social Sciences
文摘Anthropogenic aluminum cycle in China was analyzed by the aluminum flow diagram based on the life cycle of aluminum products. The whole anthropogenic aluminum cycle consists of four stages: alumina and aluminum production, fabrication and manufacture, use and reclamation. Based on the investigation on the 2003-2007 aluminum cycles in China, a number of changes can be found. For instance, resources self-support ratio (RSR) in alumina production dropped from 95.42%to 55.50%, while RSR in the aluminum production increased from 52.45%to 79.25%. However, RSR in the Chinese aluminum industry leveled off at 50%in the period of 2003-2007. The respective use ratios of domestic and imported aluminum scrap in the aluminum industry of 2007 were 5.38% and 9.40%. In contrast, both the net imported Al-containing resources and the lost quantity of Al-containing materials in aluminum cycle increased during the same period, as well as the net increased quantity of Al-containing materials in social stock and recycled Al-scrap. Proposals for promoting aluminum cycle were put forward. The import/export policy and reducing the loss of Al-containing materials for the aluminum industry in China in the future were discussed.
基金This work was supported by National Natural Science Foundation of China(Grant No.91644214)Youth Innovation Program of Universities in Shandong Province(Grant No.2019KJD007)Fundamental Research Fund of Shandong University(Grant No.2020QNQT012).
文摘Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.
基金Project(41171361)supported by the National Natural Science Foundation of China(General Program)
文摘Knowledge of the changes in a material’s function, form, and location during the transfer and transformation of materials to generate human services will improve our understanding of how humanity interacts with the environment and of how services are formed by human activities. We compared lead’s anthropogenic and biogeochemical cycles and found that the services, pathways, and changes in form requiring the most attention. We traced lead through its life cycle and identified the changes in its functions, forms, and locations by examining technology and engineering information. Lead ore and scrap were the two main anthropogenic sources of lead. When lead provides human services, its main functions included the storage and delivery of electricity, anti-corrosion treatments, and radiation protection; the main forms of lead in these products were Pb, PbO2 and PbSO4, and the main location changed from lithosphere in central China to regions in eastern China.
基金Project supported by the International Project between The Netherlands Royal Academy of Arts and Sciences and Chinese Academy of Sciences (No. 04CDP014) the National Natural Science Foundation of China (No. 40471130).
文摘Surface water bodies are progressively subjected to stress as a result of anthropogenic activities. This study assessed and examined the impact of human activities on spatial variation in the water quality of 19 rivers in the Taihu watershed. Concentrations of physicochemical parameters of surface water quality were determined at the mouth of each river during the period of 2000-2004. Multivariate statistical techniques were applied to identify characteristics of the water quality in the studied rivers. The results showed that rivers strongly influenced by household wastewater have the highest concentrations of nutrients (TN and TP). Moreover, rivers in the vicinity of a metropolis presented low dissolved oxygen (DO) levels. However, organic-chemical pollution (petroleum and volatile phenolics) was identified with high localization. Two rivers influenced by sewage from industry and ships were distinguished from other rivers with high values of petroleum. The Taige channel, a river located in Changzhou City that is strongly influenced by wastewater from industry, was characterized with an extraordinarily high value of volatile phenolics. Rivers passing through countries, especially through hilly countries were characterized with high DO contents and low nutrient and organic-chemical pollution, suggesting that agriculture puts less pressure on water quality in adjacent rivers. Therefore, more effort should be made in controlling point pollution to restore water quality in rivers adjacent to cities.
基金Project supported by the Knowledge Innovation Key Project of the Chinese Academy of Sciences (No. KZCX1-YW-14-5)the National Natural Science Foundation of China (No. 30600086)
文摘Taihu Lake region is one of the most industrialized areas in China, and the surface water is progressively susceptible to anthropogenic pollution. The physicochemical parameters of surface water quality were determined at 20 sampling sites in Taihu Lake region, China in spring, summer, autumn, and winter seasons of 2005-2006 to assess the effect of human activities on the surface water quality. Principal component analysis (PCA) and cluster analysis (CA) were used to identify characteristics of the water quality in the studied water bodies. PCA extracted the first three principal components (PCs), explaining 80.84% of the total variance of the raw data. Especially, PC1 (38.91%) was associated with NH 4 -N, total N, soluble reactive phosphorus, and total P. PC2 (22.70%) was characterized by NO 3 -N and temperature. PC3 (19.23%) was mainly associated with pH and dissolved organic carbon. CA showed that streams were influenced by urban residential subsistence and livestock farming contributed significantly to PC1 throughout the year. The streams influenced by farmland runoff contributed most to PC2 in spring and winter compared with other streams. PC3 was affected mainly by aquiculture in spring, rural residential subsistence in summer, and livestock farming in fall and winter seasons. Further analyses showed that farmlands contributed significantly to nitrogen pollution of Taihu Lake, while urban residential subsistence and livestock farming also polluted water quality of Taihu Lake in rainy season. The results would be helpful for the authorities to take sound actions for an effective management of water quality in Taihu Lake region.
基金Under the auspices of National Natural Science Foundation of China(No.40930528)State Forestry Administration of China(No.201004058)External Cooperation Program of Chinese Academy of Sciences(No.29GJHZ0948)
文摘Human activities alter land use patterns and affect landscape sustainability. It is therefore very important to investigate the relationship between land use change and human activities. This study focuses on the detection of changing land use patterns in the Yanhe River Basin in northern Loess Plateau of China between 1995 and 2008. Landscape metrics were used to analyze the changing land use patterns and to explore the related anthropogenic driving forces. Results show that:1) Totally, 186 590 ha of croplands were converted into alternate land-use types (equivalent to 61.7% of the original cropland area). The majority of cropland areas were found to be converted into grassland and woodland areas (accounting for 55.9% and 4.9% respectively of the original cropland areas). 2) Both cropland and woodland demonstrated an increasing fragmentation tendency while grasslands showed a decreasing fragmentation tendency. 3) Multiple driving forces of land use change were thought to act together to changes in landscape metrics in the Yanhe River Basin. The anthropogenic driving forces were analyzed from four perspectives:ecological conservation policy, labor force transfer, industrial development, and rural settlement. The policy of the GfG (Grain for Green) project was the main driving factor which expedited the conversion from cropland to woodland and grassland. Industrial development was also found to affect land use change through the direct impact of economic activities such as oil exploration and agricultural production, or through indirect impacts such as the industrial structures readjustment. Labor force transfer from rural to urban areas was found to follow the industrial structure readjustment and further drove land use change from cropland to off-farm land use. Establishment of new tile-roofed houses instead of cave-type dwellings in rural settlements has helped to aggregate the original scattered land-use type of construction.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA05090000)the National Key Program for Developing Basic Sciences of China (Grant No. 2009CB421401)+1 种基金the Special Fund for Meteorological Scientific Research in Public Interest (Grant No. GYHY201106028)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-202)
文摘We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Based on energy consumption and high-quality land use data,we designed two scenarios to represent no-AHR and current-AHR conditions.By comparing the results of the two numerical experiments,changes of surface air temperature and precipitation due to AHR were quantified and analyzed.We concluded that AHR increases the temperature in these urbanized areas by about 0.5℃-1℃,and this increase is more pronounced in winter than in other seasons.The inclusion of AHR enhances the convergence of water vapor over urbanized areas.Together with the warming of the lower troposphere and the enhancement of ascending motions caused by AHR,the average convective available potential energy in urbanized areas is increased.Rainfall amounts in summer over urbanized areas are likely to increase and regional precipitation patterns to be altered to some extent.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-QN208)the National Basic Research Program of China (Grant No. 2010CB428502)+3 种基金the open fund of the State Key Laboratory of Remote Sensing Science (Grant No. OFSLRSS201113)the CAS Strategic Priority Research Program (Grant No. XDA05110103)the R&D Special Fund for Public Welfare Industry (meteorology) by the Ministry of Financethe Ministry of Science and Technology (Grant No. GYHY20100601404)
文摘Using observed daily precipitation data to classify five levels of rainy days by strength in South China (SC),with an emphasis on the Pearl River Delta (PRD) region,the spatiotemporal variation of different grades of precipitation during the period 1960-2010 was analyzed and the possible link with anthropogenic aerosols examined.Statistical analysis showed that drizzle and small precipitation has significantly decreased,whereas medium to heavy precipitation has increased slightly over the past 50 years (although not statistically significant).Further data analysis suggested that the decline in drizzle and small precipitation probably has a strong link to increased concentrations of anthropogenic aerosols produced by large-scale human activities related to the rapid socioeconomic development of the PRD region.These aerosols may also have led to the obvious decreasing trend in horizontal visibility and sunshine duration in SC,which is statistically significant according to the t-test.
基金supported by the Research and Development Special Fund for Public Welfare Industry(Meteorology)(Grant No.2008416022)the National Natural Science Foundation of China(GrantNo.40730106)+2 种基金the National Basic Research Program of China("973program",Grant No.2010CB951802)the Ocean Public Welfare Scientific Research ProjectState Oceanic Administration of the People's Republic of China(Grant No.200905012-4)
文摘A basin-wide ocean general circulation model (OGCM) of the Pacific Ocean is employed to estimate the uptake and storage of anthropogenic CO2 using two different simulation approaches. The simulation (named BIO) makes use of a carbon model with biological processes and full thermodynamic equations to calculate surface water partial pressure of CO2, whereas the other simulation (named PTB) makes use of a perturbation approach to calculate surface water partial pressure of anthropogenic CO2. The results from the two simulations agree well with the estimates based on observation data in most important aspects of the vertical distribution as well as the total inventory of anthropogenic carbon. The storage of anthropogenic carbon from BIO is closer to the observation-based estimate than that from PTB. The Revelle factor in 1994 obtained in BIO is generally larger than that obtained in PTB in the whole Pacific, except for the subtropical South Pacific. This, to large extent, leads to the difference in the surface anthropogenic CO2 concentration between the two runs. The relative difference in the annual uptake between the two runs is almost constant during the integration processes after 1850. This is probably not caused by dissolved inorganic carbon (DIC), but rather by a factor independent of time. In both runs, the rate of change in anthropogenic CO2 fluxes with time is consistent with the rate of change in the growth rate of atmospheric partial pressure of CO2.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX-2-YW-218)the National Natural Science Foundation of China (40730106)the Key Frontier Project of the Institute of Atmospheric Physics (IAP07114).
文摘A global ocean general circulation model (L30T63) is employed to study the uptake and distribution of anthropogenic CO2 in the ocean. A subgrid-scale mixing scheme called GM90 is used in the model. There are two main GM90 parameters including isopycnal diffusivity and skew (thickness) diffusivity. Sensitivities of the ocean circulation and the redistribution of dissolved anthropogenic CO2 to these two parameters are examined. Two runs estimate the global oceanic anthropogenic CO2 uptake to be 1.64 and 1.73 Pg C yr^-1 for the 1990s, and that the global ocean contained 86.8 and 92.7 Pg C of anthropogenic CO2 at the end of 1994, respectively. Both the total inventory and uptake from our model are smaller than the data-based estimates. In this presentation, the vertical distributions of anthropogenic CO2 at three meridional sections are discussed and compared with the available data-based estimates. The inventory in the individual basins is also calculated. Use of large isopycnal diffusivity can generally improve the simulated results, including the exchange flux, the vertical distribution patterns, inventory, storage, etc. In terms of comparison of the vertical distributions and column inventory, we find that the total inventory in the Pacific Ocean obtained from our model is in good agreement with the data-based estimate, but a large difference exists in the Atlantic Ocean, particularly in the South Atlantic. The main reasons are weak vertical mixing and that our model generates small exchange fluxes of anthropogenic CO2 in the Southern Ocean. Improvement in the simulation of the vertical transport and sea ice in the Southern Ocean is important in future work.