Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexter...Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.展开更多
This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators(TSAs).The use of TSAs provides several advantages such as muscle-like structures,high transmission ratios,large output...This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators(TSAs).The use of TSAs provides several advantages such as muscle-like structures,high transmission ratios,large output forces,high efficiency,compactness,inherent compliance,and the ability to transmit power over distances.However,conventional sensors used in TSA-actuated robotic hands increase stiffness,mass,volume,and complexity,making feedback control challenging.To address this issue,a novel self-sensing approach is proposed using strain-sensing string based on Conductive Polymer Composite(CPC).By measuring the resistance changes in the strain-sensing string,the bending angle of the robot hand's fingers can be estimated,enabling closed-loop control without external sensors.The developed self-sensing anthropomorphic robot hand comprises a 3D-printed structure with five fingers,a palm,five self-sensing TSAs,and a 3D-printed forearm.Experimental studies validate the self-sensing properties of the TSA and the anthropomorphic robot hand.Additionally,a real-time Virtual Reality(VR)monitoring system is implemented for visualizing and monitoring the robot hand's movements using its self-sensing capabilities.This research contributes valuable insights and advancements to the field of intelligent prosthetics and robotic end grippers.展开更多
In this paper, we present a new concept of the mechanical design of a humanoid robot. The goal is to build a humanoid robot utilizing a new structure which is more suitable for human-like walking with the characterist...In this paper, we present a new concept of the mechanical design of a humanoid robot. The goal is to build a humanoid robot utilizing a new structure which is more suitable for human-like walking with the characteristics of the knee stretch, heel-contact, and toe-off. Inspired by human skeleton, we made an anthropomorphic pelvis for the humanoid robot. In comparison with con- ventional humanoid robots, with such the anthropomorphic pelvis, our robot is capable of adjusting the center of gravity of the upper body by the motion of pelvic tilt, thus reducing the required torque at the ankle joint and the velocity variations in hu- man-like walking. With more precise analysis of the foot mechanism, the fixed-length inverted pendulum can be used to describe the dynamics of biped walking, thus preventing redundant works and power consumption in length variable inverted pendulum system. As the result of the new structure we propose, a humanoid robot is able to walk with human-like gait.展开更多
文摘Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.
基金supported by the Anhui Provincial Key Research and Development Program No.2022f04020008National Natural Science Foundation of China No.62301522Anhui Provincial Nature Science Foundation No.1908085MF196.
文摘This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators(TSAs).The use of TSAs provides several advantages such as muscle-like structures,high transmission ratios,large output forces,high efficiency,compactness,inherent compliance,and the ability to transmit power over distances.However,conventional sensors used in TSA-actuated robotic hands increase stiffness,mass,volume,and complexity,making feedback control challenging.To address this issue,a novel self-sensing approach is proposed using strain-sensing string based on Conductive Polymer Composite(CPC).By measuring the resistance changes in the strain-sensing string,the bending angle of the robot hand's fingers can be estimated,enabling closed-loop control without external sensors.The developed self-sensing anthropomorphic robot hand comprises a 3D-printed structure with five fingers,a palm,five self-sensing TSAs,and a 3D-printed forearm.Experimental studies validate the self-sensing properties of the TSA and the anthropomorphic robot hand.Additionally,a real-time Virtual Reality(VR)monitoring system is implemented for visualizing and monitoring the robot hand's movements using its self-sensing capabilities.This research contributes valuable insights and advancements to the field of intelligent prosthetics and robotic end grippers.
文摘In this paper, we present a new concept of the mechanical design of a humanoid robot. The goal is to build a humanoid robot utilizing a new structure which is more suitable for human-like walking with the characteristics of the knee stretch, heel-contact, and toe-off. Inspired by human skeleton, we made an anthropomorphic pelvis for the humanoid robot. In comparison with con- ventional humanoid robots, with such the anthropomorphic pelvis, our robot is capable of adjusting the center of gravity of the upper body by the motion of pelvic tilt, thus reducing the required torque at the ankle joint and the velocity variations in hu- man-like walking. With more precise analysis of the foot mechanism, the fixed-length inverted pendulum can be used to describe the dynamics of biped walking, thus preventing redundant works and power consumption in length variable inverted pendulum system. As the result of the new structure we propose, a humanoid robot is able to walk with human-like gait.