A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Mont...A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.展开更多
A new binuclear Cu(Ⅱ) complex with nitronyl nitroxide radicals [Cu(NIT3Py)2Cl2]2(NIT3Py = 2-(3'-pyridinyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized and structurally characterized b...A new binuclear Cu(Ⅱ) complex with nitronyl nitroxide radicals [Cu(NIT3Py)2Cl2]2(NIT3Py = 2-(3'-pyridinyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized and structurally characterized by X-ray diffraction analysis.It crystallizes in monoclinic,space group C2/c with a = 38.483(4),b = 7.2450(8),c = 27.559(3) ,β = 134.0180(10)°,V = 5525.6(10) 3,C48H64Cl4Cu2N12O8,Mr = 1206.00,Z = 4,Dc = 1.450 g/cm3,μ(MoKα) = 1.025 mm-1,F(000) = 2504,S = 1.066,the final R = 0.0471 and wR = 0.1121 for 3286 observed reflections(I 2σ(I)).The title complex consists of centrosymmetric dinuclear units [Cu(NIT3Py)2Cl2]2,in which the copper ions are square-pyramidally coordinated by two pyridyl nitrogen atoms of two radical ligands and three chlorine anions,two of which bridge the copper ions.The magnetic measurements show ferromagnetic interactions between the copper ions and the radical ligands.展开更多
Based on the magnetoelastic generalized variational principle and Hamilton's principle, a dynamic theoretical model characterizing the magnetoelastic interaction of a soft ferromagnetic medium in an applied magnetic ...Based on the magnetoelastic generalized variational principle and Hamilton's principle, a dynamic theoretical model characterizing the magnetoelastic interaction of a soft ferromagnetic medium in an applied magnetic field is developed in this paper. From the variational manipulation of magnetic scale potential and elastic displacement, all the fundamental equations for the magnetic field and mechanical deformation, as well as the magnetic body force and magnetic traction for describing magnetoelastic interaction are derived. The theoretical model is applied to a ferromagnetic rod vibrating in an applied magnetic field using a perturbation technique and the Galerkin method. The results show that the magnetic field will change the natural frequencies of the ferromagnetic rod by causing a decrease with the bending motion along the applied magnetic field where the magnetoelastic buckling will take place, and by causing an increase when the bending motion of the rod is perpendicular to the field. The prediction by the mode presented in this paper qualitatively agrees with the natural frequency changes of the ferromagnetic rod observed in the experiment.展开更多
The key to revealing the behaviors of magnetoelastic interaction is how to express the magnetic forces applying on a ferromagnetic elastic body. In this paper, a functional for a ferromagnetic thin plate in magnetic f...The key to revealing the behaviors of magnetoelastic interaction is how to express the magnetic forces applying on a ferromagnetic elastic body. In this paper, a functional for a ferromagnetic thin plate in magnetic fields is proposed by taking the summation of the magnetic energy of the magnetic system and the strain energy of the elastic plates. We present a variational principle for the problem by choosing the variations of magnetic potential and deflection as independent variates each other. Based on the principle, not only are the simultaneous governing equations for magnetic fields and deformation of structures deduced, but also a general expression of magnetic force acting on the plates is gained, which makes it possible to commonly simulate the distinct two experiments of magnetoelastic interaction in a theoretical model. Thus, it can be used to theoretical prediction of the magnetoelastic interaction of ferromagnetic plates in a complex environment of applied magnetic fields.展开更多
This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the i...This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the influence of magnon-magnon interaction on the magnon band topology.We find that Chern numbers of two renormalized magnon bands are different above and below the critical temperature,which means that the magnon band gap-closing phenomenon is an indicator for one topological phase transition of the checkerboard ferromagnet.Our results show that the checkerboard ferromagnet possesses two topological phases,and its topological phase can be controlled either via the temperature or the applied magnetic field due to magnon-magnon interactions.Interestingly,it is found that the topological phase transition can occur twice with the increase in the temperature,which is different from the results of the honeycomb ferromagnet.展开更多
In present investigation exchange interactions of Pr_(n+1)Co_(3n+5)B_(2n)-type compounds have been evalu- ated in the light of molecular-field theory. The exchange interactions and ferromagnetism in these compounds ar...In present investigation exchange interactions of Pr_(n+1)Co_(3n+5)B_(2n)-type compounds have been evalu- ated in the light of molecular-field theory. The exchange interactions and ferromagnetism in these compounds are discussed in terms of lattice parameters and interatomic distance between Co atom.展开更多
This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant external magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferrom...This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant external magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferromagnetic environment. We have shown in this work that the character variability of the field induces oscillations amongst the eigen modes of the environment. This observation is made via the derivation of the transition probability density of state, a manner by which critical parameters (parameters where transition occur) of the system could be obtained as it shows resonance peak. We equally observed that the two different magnons modes resulting from the frequency splitting via the application of the time-varying external B-Field, exhibit each a resonant peak of similar amplitude at different temperature ranges. This additional information shows that the probability for the central spin system to remain in its initially prepared diabatic state is enhanced for some temperature ranges for the corresponding two magnon modes. Hence, these temperature ranges where the probability density is maximum could save as decoherence free environment;an important requirement for the implementation of quantum computation and information processing in solid state circuitry. The theoretical and numerical results presented for the decoherence time and the probability density are that of a decohered central electron spin coupled to an anti-ferromagnetic spin bath. The theory is based on a spin wave approximation and on the density matrix using both transformations of Bloch, Primakov and Bogoliobuv in the adiabatic limit.展开更多
In this work we present a model for the determination of the interaction energy for triplet and singlet states in atoms with incomplete filled shells. Our model includes the modification of the Coulomb’s law by the i...In this work we present a model for the determination of the interaction energy for triplet and singlet states in atoms with incomplete filled shells. Our model includes the modification of the Coulomb’s law by the interaction between the magnetic moments of the electrons. We find that the energy of the triplet state is lower than the energy of the singlet state. We calculate the interaction energy between the electrons from the adjacent atoms in fcc lattices and we find that the minimum interaction energy is attained for the triplet state. The result is presented for the interaction between the electrons of the first coordination group and those of the second coordination group. The interaction energy which aligns the spins is used to evaluate the Curie temperature in a mean field model.展开更多
The research paper investigates the intricate landscape of drug-drug interactions (DDIs) within the context of breast cancer treatment, with a particular focus on the elderly population and the use of complementary an...The research paper investigates the intricate landscape of drug-drug interactions (DDIs) within the context of breast cancer treatment, with a particular focus on the elderly population and the use of complementary and alternative medicine (CAM). The study underscores the heightened susceptibility of elderly patients to DDIs due to the prevalence of polypharmacy and the widespread utilization of CAM among breast cancer patients. The potential ramifications of DDIs, encompassing adverse drug events and diminished treatment efficacy, are elucidated. The paper accentuates the imperative for healthcare providers to comprehensively understand both conventional and CAM therapies, enabling them to provide patients with informed guidance regarding safe and efficacious treatment options, culminating in enhanced patient outcomes.展开更多
We revisit the quantum features of an anti-ferromagnetic (AF) spin environment at finite temperature with gap in its frequency spectrum, on the dynamics quantum correlations of a coupled central two qubits system with...We revisit the quantum features of an anti-ferromagnetic (AF) spin environment at finite temperature with gap in its frequency spectrum, on the dynamics quantum correlations of a coupled central two qubits system with Dzyaloshinskii-Moriya (DM) interaction, prepared in two entangled Bell states. Using entanglement and quantum discord as quantum meters of decoherence, the prepared entangled states are classified as robust or fragile relative to the degree of information leakage to the AF environment. By tailoring the size of the frequency gap, anisotropy field strength and induced field, due to system AF spin environment coupling, size of the AF environment and DM interaction parameter, a decoherence-free sub-space can be accessed for efficient execution of quantum protocols encoded in the entangled states.展开更多
The magneto-plastic instability of a ferromagnetic beam-type plate with simple supports and small initial imperfection is analytically investigated in this paper for that the plastic deformation of the plate with a ...The magneto-plastic instability of a ferromagnetic beam-type plate with simple supports and small initial imperfection is analytically investigated in this paper for that the plastic deformation of the plate with a linear-strain hardening relation is considered when the plate is located in a strong uniformly distributed magnetic ?eld. After the distribution of magnetic ?elds related to the de?ected con?guration of plate is imaginably divided into two parts, i.e., one is related to the ?at plate and the other dependent on the perturbation of magnetic ?elds for which the plate con?guration changes from the ?at into the deformed state, the perturbation technique is employed to analyze the distribution of the perturbation magnetic ?elds in and out-of the magnetic medium of the ferromagnetic structure in a transverse magnetic ?eld, which leads to some analytical formulae/solutions for the magnetic ?elds and the resulting magnetic force exerted on the plate. Based on them, the magneto-plastic buckling and snapping of the plate in a transverse magnetic ?eld is discussed, and the critical magnetic ?eld is analytically formulated in terms of the parameters of geometry and material of the plate employed by solving the governing equation of the magneto-plastic plate in the applied magnetic ?eld. Further, the sensitivity of the initial imperfection on the magneto-plastic instability, expressed by an ampli?cation function, is obtained by solving the dynamic equation of de?ection of the plate after the inertial force in the transverse direction is taken into account. The results obtained show that the critical magnetic ?eld is sensitive to the plastic characteristic, e.g., hardening coe?cient, and the instability mode and de?ection of the plate are dependent on the geometrical imperfection as well.展开更多
The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, v...The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.展开更多
As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been co...As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been conducted. One of the key steps for the theoretical prediction of the critical magnetic field is how to formulate magnetic force exerted on the magnetized medium. Till today, the theoretical predictions, from theoretical models in publications, of the magnetoelastic buckling of ferromagnetic cantilevered beam-plate in transverse magnetic field are all higher than their experimental data. Sometimes, the discrepancy between them is as high as 100%. In this paper, the macroscope formulation of the magnetic forces is strictly obtained from the microscope Amperion current model. After that, a new theoretical model is established to describe the magnetoelastic buckling phenomenon of ferromagnetic thin plates with geometrically nonlinear deformation in a nonuniform transverse magnetic field. The numerical method for quantitative analysis is employed by combining the finite elemental method for magnetic fields and the finite difference method for deformation of plates. The numerical results obtained from this new theoretical model show that the theoretical predictions of critical values of the buckling magnetic field for the ferromagnetic cantilevered beam-plate are in excellent agreement with their experimental data. By the way, the region of applicability to the Moon-Pao's model, or the couple model, is checked by quantitative results.展开更多
We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin-orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by t...We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin-orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by the Green's function method. We find that due to the quantum interference effect arising from the RSOC-induced spin precession phase and the difference in travelling phase between the two arms of the ring, the conductance becomes spin-polarized even in the antiparallel magnetic configuration of the two leads, which is different from the case in single conduction channel system. The linear conductance, the spin polarization and the tunnel magnetoresistance are periodic functions of the two phases, and can be efficiently tuned by the structure parameters.展开更多
A new dinuclear copper(Ⅱ) complex with imino nitroxide radicals [Cu2(NO3)2(IM- 1 ′-MeBzIm)2(dca)2] (IM-1 ′-MeBzIm = 2-{2′-[(1′-methyl)benzimidazolyl]}-4,4,5,5-tetramethylimidazoline-1-oxyl, dca = dicya...A new dinuclear copper(Ⅱ) complex with imino nitroxide radicals [Cu2(NO3)2(IM- 1 ′-MeBzIm)2(dca)2] (IM-1 ′-MeBzIm = 2-{2′-[(1′-methyl)benzimidazolyl]}-4,4,5,5-tetramethylimidazoline-1-oxyl, dca = dicyanamide anion) has been prepared and structurally characterized by single-crystal X-ray diffraction. The complex crystallizes in triclinic, space group P 1^-, with α = 9.440(5), b = 10.124(6), c = 11.603(7) A, α = 102.904(7), β = 94.033(6),γ = 104.299(7)°, C34H40Cu2N16O8, Mr = 927.90, V= 1038.2(10) A^3, Z = 1, Dc = 1.484 g/cm^3, μ(MoKα) = 1.093 mm^-1, F(000) = 478, R = 0.0609 and wR = 0.1512 for 2889 observed reflections with Ⅰ 〉 2σ(I). X-ray analysis reveals that two Cu(Ⅱ) atoms are bridged by two dicyanamides to form a centrosymmetric Cu(Ⅱ)-Cu(Ⅱ) dinuclear entity. Every Cu(Ⅱ) ion is five-coordinated with a distorted square pyramidal coordination geometry and IM-1′-MeBzlm ligand coordinates to the metal ion with the k^2 N(1 ′-MeBzlm), O(IM) mode to avoid steric hindrance with the methyl group in the complex. Meanwhile, the molecules are linked by intermolecular hydrogen bonds, leading to a 1-D chain structure. Moreover, such chains are further linked by π-π stacking interactions to form a 2-D network structure. Magnetic measurement demonstrates that the intramolecular exchange couplings between Cu(Ⅱ) ion and the IM-1 ′-MeBzIm are ferromagnetic with J = 12.46 cm^-1, where the spin Hamitonian is defined as H^ = -2JS^1S^2 within the complex.展开更多
A new dinuclear copper(Ⅱ) complex, [Cu(L)(py)]2 1 (H2L = N-(2-hydroxybenzyl)- salicylaldimine, py = pyridine), has been synthesized and characterized by elemental analysis, IR and UV spectra. 1 crystallizes...A new dinuclear copper(Ⅱ) complex, [Cu(L)(py)]2 1 (H2L = N-(2-hydroxybenzyl)- salicylaldimine, py = pyridine), has been synthesized and characterized by elemental analysis, IR and UV spectra. 1 crystallizes in space group P2 1/n with a = 8.2106, b = 10.715, c = 17.864A, β = 99.365°, V = 1550.7A3, Z = 4, C19H16CuN2O2, Mr = 367.88, Dc = 1.576 g/cm3,μ(MoKα) = 1.422 mm-1, F(000) = 756, the final R = 0.0280 and wR = 0.0746. Complex 1 is a centrosymmetric dimer with two copper(H) centers, two py ligands and two L2- ligands. Each L2- ligand donates its azomethine nitrogen and one of the phenolate groups to one copper(Ⅱ) ion and shares the other phenolate group between the two copper(H) ions, affording a Cu2O2 plane. Each copper(Ⅱ) center has a slightly distorted square pyramidal geometry with a bridging phenolate group at the apex. Magnetic studies suggest the presence of a weak ferromagnetic interaction Via two phenoxo bridges. The magnetic susceptibility data (2-300 K) of complex 1 were analyzed by means of H = -2JS1S2 -DSz. The least-squares fitting of the data to the theoretical equation leads to J = 10.3 cm-1, g = 2.03, D = 0.67 cm-1 and R = ∑(Xobsd -Xcalcd)2/∑Xobsd2= 2.76 × 10^-3.展开更多
The compound {[Cu(Hpht)(N_3)]·H_2O}_n (Hpht = hydrogen phthalate) is formedby chains of copper atoms bridged simultaneously by syn-syn carboxylato and end-on azido bridges.Taking into account the large Cu-O(1)-C(...The compound {[Cu(Hpht)(N_3)]·H_2O}_n (Hpht = hydrogen phthalate) is formedby chains of copper atoms bridged simultaneously by syn-syn carboxylato and end-on azido bridges.Taking into account the large Cu-O(1)-C(7) bond angle of the single carboxylato bridge (131°), orthe large Cu-N(11)-Cu bond angle of the azido bridge (111.9°), a moderately intrachainantiferromagnetic behavior should be expected for the compound. This paper is devoted to examiningthe apparently anomalous intrachain ferromagnetic behavior of {[Cu(Hpht)(N_3)]·H_2O}_n, using firstprinciples within the full potential linearized augmented plane wave (FP-LAPW) method. The totalenergy, the density of states (DOS), and the spin distributions are obtained. The atomic spindistribution has been analyzed as resulting from the interplay of electron delocalization and spinpolarization. The DOS reveals a surprisingly strong exchange interaction between the d type orbitalsof the copper and the π molecular orbitals of the two ligands.展开更多
We grew single crystals of vanadium-substituted,ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn from molten tin flux.These solid solutions all crystallize in a full Heusler structure(L21)while their Curie temper...We grew single crystals of vanadium-substituted,ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn from molten tin flux.These solid solutions all crystallize in a full Heusler structure(L21)while their Curie temperatures and magnetic moments are enhanced by V-substitution.Their resistivity gradually changes from bad-metal-like to semiconductor-like with increasing x while the anomalous Hall effect(AHE),which can be well fitted by Tian-Ye-Jin(TYJ)scaling,[1]is also enhanced.Moreover,we find an apparent electron-electron interaction(EEI)induced quantum correction in resistivity at low temperature.The anomalous Hall conductivity(AHC)dominated by the intrinsic term is not corrected.展开更多
Spin transfer torque in magnetic structure occurs when the transverse component of the spin current that flows from the nonmagnetic medium to ferromagnetic medium is absorbed by the interface. In this paper, consideri...Spin transfer torque in magnetic structure occurs when the transverse component of the spin current that flows from the nonmagnetic medium to ferromagnetic medium is absorbed by the interface. In this paper, considering the Rashba effect on the semiconductor region, we discuss the spin transfer torque in semiconductor/ferromagnetic structure and obtain the components of spin-current density for two models:(i) single electron and(ii) the distribution of electrons. We show that no matter whether the difference in Fermi surface between semiconductor and Fermi spheres for the up and down spins in ferromagnetic increases, the transmission probability decreases. The obtained results for the values used in this article illustrate that Rashba effect increases the difference in Fermi sphere between semiconductor and Fermi sphere for the up and down spins in ferromagnetic. The results also show that the Rashba effect, brings an additional contribution to the components of spin transfer torque, which does not exist in the absence of the Rashba interaction. Moreover, the Rashba term has also different effects on the transverse components of the spin torque transfer.展开更多
Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley...Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction.The staggered exchange interaction breaks the spatial inversion symmetry,leading to a valley magnon Hall effect.With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice,the magnon Hall effect can be observed from only one valley.Moreover,reversing the Dzyaloshinskii-Moriya interaction(D→-D)and exchanging J_(1)and J_(2)(J_(1)■J_(2))can also regulate the position of the unequal valleys.With increasing Dzyaloshinskii-Moriya interaction,a series of topological phase transitions appear when two bands come to touch and split at the valleys.The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu_(2)V_(2)O_(7),and will extend the basis for magnonics applications in the future.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0210004)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB30000000)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.WK3510000013)the National Supercomputing Center in Tianjin。
文摘A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.
基金supported by the National Natural Science Foundation of China (No. 20901059)the Technological Development Foundation Project of Tianjin Educational Committee (No. 20080503)
文摘A new binuclear Cu(Ⅱ) complex with nitronyl nitroxide radicals [Cu(NIT3Py)2Cl2]2(NIT3Py = 2-(3'-pyridinyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized and structurally characterized by X-ray diffraction analysis.It crystallizes in monoclinic,space group C2/c with a = 38.483(4),b = 7.2450(8),c = 27.559(3) ,β = 134.0180(10)°,V = 5525.6(10) 3,C48H64Cl4Cu2N12O8,Mr = 1206.00,Z = 4,Dc = 1.450 g/cm3,μ(MoKα) = 1.025 mm-1,F(000) = 2504,S = 1.066,the final R = 0.0471 and wR = 0.1121 for 3286 observed reflections(I 2σ(I)).The title complex consists of centrosymmetric dinuclear units [Cu(NIT3Py)2Cl2]2,in which the copper ions are square-pyramidally coordinated by two pyridyl nitrogen atoms of two radical ligands and three chlorine anions,two of which bridge the copper ions.The magnetic measurements show ferromagnetic interactions between the copper ions and the radical ligands.
基金the National Natural Science Foundation of China(No.10502022)theProgram for New Century Excellent Talents in University(NCET-050878)
文摘Based on the magnetoelastic generalized variational principle and Hamilton's principle, a dynamic theoretical model characterizing the magnetoelastic interaction of a soft ferromagnetic medium in an applied magnetic field is developed in this paper. From the variational manipulation of magnetic scale potential and elastic displacement, all the fundamental equations for the magnetic field and mechanical deformation, as well as the magnetic body force and magnetic traction for describing magnetoelastic interaction are derived. The theoretical model is applied to a ferromagnetic rod vibrating in an applied magnetic field using a perturbation technique and the Galerkin method. The results show that the magnetic field will change the natural frequencies of the ferromagnetic rod by causing a decrease with the bending motion along the applied magnetic field where the magnetoelastic buckling will take place, and by causing an increase when the bending motion of the rod is perpendicular to the field. The prediction by the mode presented in this paper qualitatively agrees with the natural frequency changes of the ferromagnetic rod observed in the experiment.
文摘The key to revealing the behaviors of magnetoelastic interaction is how to express the magnetic forces applying on a ferromagnetic elastic body. In this paper, a functional for a ferromagnetic thin plate in magnetic fields is proposed by taking the summation of the magnetic energy of the magnetic system and the strain energy of the elastic plates. We present a variational principle for the problem by choosing the variations of magnetic potential and deflection as independent variates each other. Based on the principle, not only are the simultaneous governing equations for magnetic fields and deformation of structures deduced, but also a general expression of magnetic force acting on the plates is gained, which makes it possible to commonly simulate the distinct two experiments of magnetoelastic interaction in a theoretical model. Thus, it can be used to theoretical prediction of the magnetoelastic interaction of ferromagnetic plates in a complex environment of applied magnetic fields.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064011)the Natural Science Fund Project of Hunan Province(Grant No.2020JJ4498)the Graduate Research Innovation Foundation of Jishou University(Grant No.Jdy21030).
文摘This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the influence of magnon-magnon interaction on the magnon band topology.We find that Chern numbers of two renormalized magnon bands are different above and below the critical temperature,which means that the magnon band gap-closing phenomenon is an indicator for one topological phase transition of the checkerboard ferromagnet.Our results show that the checkerboard ferromagnet possesses two topological phases,and its topological phase can be controlled either via the temperature or the applied magnetic field due to magnon-magnon interactions.Interestingly,it is found that the topological phase transition can occur twice with the increase in the temperature,which is different from the results of the honeycomb ferromagnet.
文摘In present investigation exchange interactions of Pr_(n+1)Co_(3n+5)B_(2n)-type compounds have been evalu- ated in the light of molecular-field theory. The exchange interactions and ferromagnetism in these compounds are discussed in terms of lattice parameters and interatomic distance between Co atom.
文摘This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant external magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferromagnetic environment. We have shown in this work that the character variability of the field induces oscillations amongst the eigen modes of the environment. This observation is made via the derivation of the transition probability density of state, a manner by which critical parameters (parameters where transition occur) of the system could be obtained as it shows resonance peak. We equally observed that the two different magnons modes resulting from the frequency splitting via the application of the time-varying external B-Field, exhibit each a resonant peak of similar amplitude at different temperature ranges. This additional information shows that the probability for the central spin system to remain in its initially prepared diabatic state is enhanced for some temperature ranges for the corresponding two magnon modes. Hence, these temperature ranges where the probability density is maximum could save as decoherence free environment;an important requirement for the implementation of quantum computation and information processing in solid state circuitry. The theoretical and numerical results presented for the decoherence time and the probability density are that of a decohered central electron spin coupled to an anti-ferromagnetic spin bath. The theory is based on a spin wave approximation and on the density matrix using both transformations of Bloch, Primakov and Bogoliobuv in the adiabatic limit.
文摘In this work we present a model for the determination of the interaction energy for triplet and singlet states in atoms with incomplete filled shells. Our model includes the modification of the Coulomb’s law by the interaction between the magnetic moments of the electrons. We find that the energy of the triplet state is lower than the energy of the singlet state. We calculate the interaction energy between the electrons from the adjacent atoms in fcc lattices and we find that the minimum interaction energy is attained for the triplet state. The result is presented for the interaction between the electrons of the first coordination group and those of the second coordination group. The interaction energy which aligns the spins is used to evaluate the Curie temperature in a mean field model.
文摘The research paper investigates the intricate landscape of drug-drug interactions (DDIs) within the context of breast cancer treatment, with a particular focus on the elderly population and the use of complementary and alternative medicine (CAM). The study underscores the heightened susceptibility of elderly patients to DDIs due to the prevalence of polypharmacy and the widespread utilization of CAM among breast cancer patients. The potential ramifications of DDIs, encompassing adverse drug events and diminished treatment efficacy, are elucidated. The paper accentuates the imperative for healthcare providers to comprehensively understand both conventional and CAM therapies, enabling them to provide patients with informed guidance regarding safe and efficacious treatment options, culminating in enhanced patient outcomes.
文摘We revisit the quantum features of an anti-ferromagnetic (AF) spin environment at finite temperature with gap in its frequency spectrum, on the dynamics quantum correlations of a coupled central two qubits system with Dzyaloshinskii-Moriya (DM) interaction, prepared in two entangled Bell states. Using entanglement and quantum discord as quantum meters of decoherence, the prepared entangled states are classified as robust or fragile relative to the degree of information leakage to the AF environment. By tailoring the size of the frequency gap, anisotropy field strength and induced field, due to system AF spin environment coupling, size of the AF environment and DM interaction parameter, a decoherence-free sub-space can be accessed for efficient execution of quantum protocols encoded in the entangled states.
基金Project supported by the National Key Basic Pre-Research Fund of the Ministry of Science and Technology of Chinathe Fund for Outstanding Young Researchers of the National Natural Sciences Foundation of China (No.10025208)+2 种基金 the KeyFund of the National Natural Science Foundation of China the Youth Fund of the National Natural Science Foundationof China (No.10302009) and the Youth Fund of Lanzhou University (Lzu200305).
文摘The magneto-plastic instability of a ferromagnetic beam-type plate with simple supports and small initial imperfection is analytically investigated in this paper for that the plastic deformation of the plate with a linear-strain hardening relation is considered when the plate is located in a strong uniformly distributed magnetic ?eld. After the distribution of magnetic ?elds related to the de?ected con?guration of plate is imaginably divided into two parts, i.e., one is related to the ?at plate and the other dependent on the perturbation of magnetic ?elds for which the plate con?guration changes from the ?at into the deformed state, the perturbation technique is employed to analyze the distribution of the perturbation magnetic ?elds in and out-of the magnetic medium of the ferromagnetic structure in a transverse magnetic ?eld, which leads to some analytical formulae/solutions for the magnetic ?elds and the resulting magnetic force exerted on the plate. Based on them, the magneto-plastic buckling and snapping of the plate in a transverse magnetic ?eld is discussed, and the critical magnetic ?eld is analytically formulated in terms of the parameters of geometry and material of the plate employed by solving the governing equation of the magneto-plastic plate in the applied magnetic ?eld. Further, the sensitivity of the initial imperfection on the magneto-plastic instability, expressed by an ampli?cation function, is obtained by solving the dynamic equation of de?ection of the plate after the inertial force in the transverse direction is taken into account. The results obtained show that the critical magnetic ?eld is sensitive to the plastic characteristic, e.g., hardening coe?cient, and the instability mode and de?ection of the plate are dependent on the geometrical imperfection as well.
基金supported by Higher Education Commission of Pakistan, National Basic Research Program of China (2010CB934602)National Science Foundation of China (51171007 and 51271009)
文摘The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.
基金This project was supported in part by the National Natural Science Foundation of ChinaFoundation of the SEdC of China for Returned Chinese Scholars from Abroad
文摘As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been conducted. One of the key steps for the theoretical prediction of the critical magnetic field is how to formulate magnetic force exerted on the magnetized medium. Till today, the theoretical predictions, from theoretical models in publications, of the magnetoelastic buckling of ferromagnetic cantilevered beam-plate in transverse magnetic field are all higher than their experimental data. Sometimes, the discrepancy between them is as high as 100%. In this paper, the macroscope formulation of the magnetic forces is strictly obtained from the microscope Amperion current model. After that, a new theoretical model is established to describe the magnetoelastic buckling phenomenon of ferromagnetic thin plates with geometrically nonlinear deformation in a nonuniform transverse magnetic field. The numerical method for quantitative analysis is employed by combining the finite elemental method for magnetic fields and the finite difference method for deformation of plates. The numerical results obtained from this new theoretical model show that the theoretical predictions of critical values of the buckling magnetic field for the ferromagnetic cantilevered beam-plate are in excellent agreement with their experimental data. By the way, the region of applicability to the Moon-Pao's model, or the couple model, is checked by quantitative results.
基金Project supported by the National Natural Science Foundation of China(Grant No.10704011)the Education Department of Liaoning Province,China(Grant No.2009A031)
文摘We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin-orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by the Green's function method. We find that due to the quantum interference effect arising from the RSOC-induced spin precession phase and the difference in travelling phase between the two arms of the ring, the conductance becomes spin-polarized even in the antiparallel magnetic configuration of the two leads, which is different from the case in single conduction channel system. The linear conductance, the spin polarization and the tunnel magnetoresistance are periodic functions of the two phases, and can be efficiently tuned by the structure parameters.
基金supported by the National Natural Science Foundation of China (Nos. 20471026 and 20771054)the Henan Tackle Key Problem of Science and Technology (No. 0524220001)
文摘A new dinuclear copper(Ⅱ) complex with imino nitroxide radicals [Cu2(NO3)2(IM- 1 ′-MeBzIm)2(dca)2] (IM-1 ′-MeBzIm = 2-{2′-[(1′-methyl)benzimidazolyl]}-4,4,5,5-tetramethylimidazoline-1-oxyl, dca = dicyanamide anion) has been prepared and structurally characterized by single-crystal X-ray diffraction. The complex crystallizes in triclinic, space group P 1^-, with α = 9.440(5), b = 10.124(6), c = 11.603(7) A, α = 102.904(7), β = 94.033(6),γ = 104.299(7)°, C34H40Cu2N16O8, Mr = 927.90, V= 1038.2(10) A^3, Z = 1, Dc = 1.484 g/cm^3, μ(MoKα) = 1.093 mm^-1, F(000) = 478, R = 0.0609 and wR = 0.1512 for 2889 observed reflections with Ⅰ 〉 2σ(I). X-ray analysis reveals that two Cu(Ⅱ) atoms are bridged by two dicyanamides to form a centrosymmetric Cu(Ⅱ)-Cu(Ⅱ) dinuclear entity. Every Cu(Ⅱ) ion is five-coordinated with a distorted square pyramidal coordination geometry and IM-1′-MeBzlm ligand coordinates to the metal ion with the k^2 N(1 ′-MeBzlm), O(IM) mode to avoid steric hindrance with the methyl group in the complex. Meanwhile, the molecules are linked by intermolecular hydrogen bonds, leading to a 1-D chain structure. Moreover, such chains are further linked by π-π stacking interactions to form a 2-D network structure. Magnetic measurement demonstrates that the intramolecular exchange couplings between Cu(Ⅱ) ion and the IM-1 ′-MeBzIm are ferromagnetic with J = 12.46 cm^-1, where the spin Hamitonian is defined as H^ = -2JS^1S^2 within the complex.
基金supported by the Natural Science Research Program of the Education Department of Hebei Province (No. Z2008107)the National Natural Science Foundation of China (No. 20601014)the National Basic Research Program of China (973 Program, 2007CB815305)
文摘A new dinuclear copper(Ⅱ) complex, [Cu(L)(py)]2 1 (H2L = N-(2-hydroxybenzyl)- salicylaldimine, py = pyridine), has been synthesized and characterized by elemental analysis, IR and UV spectra. 1 crystallizes in space group P2 1/n with a = 8.2106, b = 10.715, c = 17.864A, β = 99.365°, V = 1550.7A3, Z = 4, C19H16CuN2O2, Mr = 367.88, Dc = 1.576 g/cm3,μ(MoKα) = 1.422 mm-1, F(000) = 756, the final R = 0.0280 and wR = 0.0746. Complex 1 is a centrosymmetric dimer with two copper(H) centers, two py ligands and two L2- ligands. Each L2- ligand donates its azomethine nitrogen and one of the phenolate groups to one copper(Ⅱ) ion and shares the other phenolate group between the two copper(H) ions, affording a Cu2O2 plane. Each copper(Ⅱ) center has a slightly distorted square pyramidal geometry with a bridging phenolate group at the apex. Magnetic studies suggest the presence of a weak ferromagnetic interaction Via two phenoxo bridges. The magnetic susceptibility data (2-300 K) of complex 1 were analyzed by means of H = -2JS1S2 -DSz. The least-squares fitting of the data to the theoretical equation leads to J = 10.3 cm-1, g = 2.03, D = 0.67 cm-1 and R = ∑(Xobsd -Xcalcd)2/∑Xobsd2= 2.76 × 10^-3.
文摘The compound {[Cu(Hpht)(N_3)]·H_2O}_n (Hpht = hydrogen phthalate) is formedby chains of copper atoms bridged simultaneously by syn-syn carboxylato and end-on azido bridges.Taking into account the large Cu-O(1)-C(7) bond angle of the single carboxylato bridge (131°), orthe large Cu-N(11)-Cu bond angle of the azido bridge (111.9°), a moderately intrachainantiferromagnetic behavior should be expected for the compound. This paper is devoted to examiningthe apparently anomalous intrachain ferromagnetic behavior of {[Cu(Hpht)(N_3)]·H_2O}_n, using firstprinciples within the full potential linearized augmented plane wave (FP-LAPW) method. The totalenergy, the density of states (DOS), and the spin distributions are obtained. The atomic spindistribution has been analyzed as resulting from the interplay of electron delocalization and spinpolarization. The DOS reveals a surprisingly strong exchange interaction between the d type orbitalsof the copper and the π molecular orbitals of the two ligands.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774007 and U1832214)the National Key R&D Program of China(Grant No.2018YFA0305601)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000).
文摘We grew single crystals of vanadium-substituted,ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn from molten tin flux.These solid solutions all crystallize in a full Heusler structure(L21)while their Curie temperatures and magnetic moments are enhanced by V-substitution.Their resistivity gradually changes from bad-metal-like to semiconductor-like with increasing x while the anomalous Hall effect(AHE),which can be well fitted by Tian-Ye-Jin(TYJ)scaling,[1]is also enhanced.Moreover,we find an apparent electron-electron interaction(EEI)induced quantum correction in resistivity at low temperature.The anomalous Hall conductivity(AHC)dominated by the intrinsic term is not corrected.
文摘Spin transfer torque in magnetic structure occurs when the transverse component of the spin current that flows from the nonmagnetic medium to ferromagnetic medium is absorbed by the interface. In this paper, considering the Rashba effect on the semiconductor region, we discuss the spin transfer torque in semiconductor/ferromagnetic structure and obtain the components of spin-current density for two models:(i) single electron and(ii) the distribution of electrons. We show that no matter whether the difference in Fermi surface between semiconductor and Fermi spheres for the up and down spins in ferromagnetic increases, the transmission probability decreases. The obtained results for the values used in this article illustrate that Rashba effect increases the difference in Fermi sphere between semiconductor and Fermi sphere for the up and down spins in ferromagnetic. The results also show that the Rashba effect, brings an additional contribution to the components of spin transfer torque, which does not exist in the absence of the Rashba interaction. Moreover, the Rashba term has also different effects on the transverse components of the spin torque transfer.
基金support from the Funding for School-level Research Projects of Yancheng Institute of Technology(Grant Nos.xjr2020038,xjr2022039,and xjr2022040)。
文摘Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction.The staggered exchange interaction breaks the spatial inversion symmetry,leading to a valley magnon Hall effect.With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice,the magnon Hall effect can be observed from only one valley.Moreover,reversing the Dzyaloshinskii-Moriya interaction(D→-D)and exchanging J_(1)and J_(2)(J_(1)■J_(2))can also regulate the position of the unequal valleys.With increasing Dzyaloshinskii-Moriya interaction,a series of topological phase transitions appear when two bands come to touch and split at the valleys.The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu_(2)V_(2)O_(7),and will extend the basis for magnonics applications in the future.